github link
Accession IconGSE107465

A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia [array]

Organism Icon Homo sapiens
Sample Icon 30 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
We demonstrate a promising approach to identify robust molecular markers for targeted treatment of acute myeloid leukemia. We show that our method outperforms several state-of-the-art approaches in identifying molecular markers replicated in validation data and predicting drug sensitivity accurately.
PubMed ID
Total Samples
30
Submitter’s Institution

Samples

Show of 30 Total Samples
Filter
Add/Remove
Accession Code
Title
Age
Specimen part
Disease
Disease stage
Processing Information
Additional Metadata
AML patient sample (AML52)
68.000
blood
aml
aml
AML patient sample (AML70)
30.000
blood
aml
aml
AML patient sample (AML79)
68.000
blood
aml
aml
AML patient sample (AML78)
63.000
blood
aml
aml
AML patient sample (AML83)
32.000
blood
aml
aml
AML patient sample (AML60)
62.000
blood
aml
aml
AML patient sample (AML77)
22.000
blood
aml
aml
AML patient sample (AML56)
69.000
blood
aml
aml
AML patient sample (AML99)
54.000
blood
aml
aml
AML patient sample (AML17)
63.000
blood
aml
aml
Loading...