github link
Accession IconGSE18571

Rapamycin treatment of MDA-MB-468 breast cancer cell line and MDA-MB-468 xenografts

Organism Icon Homo sapiens
Sample Icon 18 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in multiple intracellular signaling pathways promoting tumor growth. mTOR is aberrantly activated in a significant portion of breast cancers and is a promising target for treatment. Rapamycin and its analogues are in clinical trials for breast cancer treatment. Patterns of gene expression (metagenes) may also be used to simulate a biologic process of effects of a drug treatment. In this study, we tested the hypothesis that the gene-expression signature regulated by rapamycin could predict disease outcome for patients with breast cancer. Results: Colony formation and sulforhodamine B (IC50 < 1nM) assays, and xenograft animals showed that MDA-MB-468 cells were sensitive to treatment with rapamycin. The comparison of in vitro and in vivo gene expression data identified a signature, termed rapamycin metagene index (RMI), of 31 genes upregulated by rapamycin treatment in vitro as well as in vivo (false discovery rate of 10%). In the Miller dataset, RMI was significantly associated with tumor size or lymph node status. High (>75) percentile) RMI was significantly associated with longer survival (P = 0.015). On multivariate analysis, RMI (P = 0.029), tumor size (P = 0.015) and lymph node status (P = 0.01) were prognostic. In van 't Veer study, RMI was not associated with the time to develop distant metastasis (P = 0.41). In Wang dataset, RMI predicted time to disease relapse (P = 0.09). Conclusions: Rapamycin-regulated gene expression signature predicts clinical outcome in breast cancer. This supports the central role of mTOR signaling in breast cancer biology and provides further impetus to pursue mTOR-targeted therapies for breast cancer treatment. Mol Cancer. 2009 Sep 24;8(1):75.
PubMed ID
Total Samples
18

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Time
Processing Information
Additional Metadata
No rows found
Loading...