Description
Parkinsons disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression, or the A53T mutation, of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. Here, we used two mouse lines overexpressing human A53T-SNCA around ages 6 and 18 months and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. High pressure liquid chromatography analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also observed in SNCA deficient mice. In the striatum of aged A53TSNCA overexpressing mice, where DA levels were elevated, a paradoxical upregulation of dopamine receptors DRD1A and DRD2 was detected by immunoblots and autoradiography, findings compatible with the notion of abnormal vesicle release. Extensive transcriptome studies via microarrays and quantitative real-time RT-PCR validation of altered Homer1, Cb1, Atf2 and Pde7b transcript levels indicated a progressive reduction in the postsynaptic DA response. As functional consequences, long term depression was absent in corticostriatal slices from aged transgenic mice and an insidious decrease of spontaneous locomotor activity of these animals was found in open field tests. Taken together, the dysfunctional neurotransmission and decreased synaptic plasticity seen in the A53T-SNCA overexpressing mice reflects early functional changes within the basal ganglia resulting from synucleinopathy prior to frank neurodegeneration. Thus, preclinical stages of PD may be modeled in this mouse. Parkinsons disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression, or the A53T mutation, of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. Here, we used two mouse lines overexpressing human A53T-SNCA around ages 6 and 18 months and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. High pressure liquid chromatography analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also observed in SNCA deficient mice. In the striatum of aged A53TSNCA overexpressing mice, where DA levels were elevated, a paradoxical upregulation of dopamine receptors DRD1A and DRD2 was detected by immunoblots and autoradiography, findings compatible with the notion of abnormal vesicle release. Extensive transcriptome studies via microarrays and quantitative real-time RT-PCR validation of altered Homer1, Cb1, Atf2 and Pde7b transcript levels indicated a progressive reduction in the postsynaptic DA response. As functional consequences, long term depression was absent in corticostriatal slices from aged transgenic mice and an insidious decrease of spontaneous locomotor activity of these animals was found in open field tests. Taken together, the dysfunctional neurotransmission and decreased synaptic plasticity seen in the A53T-SNCA overexpressing mice reflects early functional changes within the basal ganglia resulting from synucleinopathy prior to frank neurodegeneration. Thus, preclinical stages of PD may be modeled in this mouse.