Description
Estrogen Receptor-a (ER) is the key feature in the majority of breast cancers and ER binding to the genome correlates with the Forkhead protein FOXA1 (HNF3a), but mechanistic insight is lacking. We now show that FOXA1 is the defining factor that governs differential ER-chromatin interactions. We show that almost all ER-chromatin interactions and gene expression changes are dependent on the presence of FOXA1 and that FOXA1 dictates genome-wide chromatin accessibility. Furthermore, we show that CTCF is an upstream negative regulator of FOXA1-chromatin interactions. In ER responsive breast cancer cells, the dependency on FOXA1 for tamoxifen-ER activity is absolute and in tamoxifen resistant cells, ER binding occurs independently of ligand, but in a FOXA1 dependent manner. Importantly, expression of FOXA1 in non-breast cancer cells is sufficient to alter ER binding and response to endocrine treatment. As such, FOXA1 is the primary determinant that regulates estrogen-ER activity and endocrine response in breast cancer cells and is sufficient to program ER functionality in non-breast cancer contexts.