github link
Accession IconGSE30213

Mechanisms of crystalline silica-induced pulmonary toxicity revealed by global gene expression profiling (A549 cells dataset 3)

Organism Icon Homo sapiens
Sample Icon 10 Downloadable Samples
Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Submitter Supplied Information

Description
A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatic analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top-ranking biological functions perturbed by silica exposure in the A549 cells and rat lungs. The involvement of oxidative stress and apoptosis in the silica-induced pulmonary toxicity was confirmed by ELISA and confocal microscopy analysis, respectively, of the silica-exposed A549 cells. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study, may result in a better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure.
PubMed ID
No associated PubMed ID
Publication Title
No associated publication
Total Samples
10
Authors
No associated authors

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Treatment
Processing Information
Additional Metadata
No rows found
Loading...