github link
Accession IconGSE30301

Skeletal Muscle Contraction Reduces Effects of Unloading on Bone Independently from the Central Nervous System: Studies Using Functional Electrical Stimulation after Spinal Cord Transection

Organism Icon Rattus norvegicus
Sample Icon 12 Downloadable Samples
Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Submitter Supplied Information

Description
Spinal cord injury (SCI) causes severe bone loss and disrupts connections between higher centers in the central nervous system (CNS) and bone. Muscle contraction elicited by functional electrical stimulation (FES) partially protects against loss of bone but cellular and molecular events by which this occurs are unknown. Here, using a rat model, we characterized effects of 7 days of contraction-induced loading of tibia and fibula due to FES when begun 16 weeks after SCI. SCI reduced tibial and femoral BMD by 12-17% and promoted bone resorption, as indicated by increased serum CTX; SCI-related changes in CTX were reversed by FES. In cultures of bone marrow cell-derived cells, SCI increased the number of osteoclasts and mRNA levels of the several osteoclast differentiation markers; these changes were significantly reversed by FES. The number of osteoblasts was also reduced by SCI as was the ratio of OPG/RANKL mRNAs therein; the unfavorable change in OPG/RANKL ratio was partially reversed by FES. cDNA microarray analysis revealed that alterations in genes involved in signaling through Wnt, FSH/LH, PTH and calcineurin/NFAT pathways may be linked to the favorable action of FES on SCI-induced bone resorption. In particular, SCI increased levels of the Wnt inhibitors DKK1, sFRP2 and SOST in osteoblasts, These effects were completely or partially reversed by FES. Our results demonstrate an anti-bone resorptive activity of acute FES in bone loss after SCI and suggest potential underlying mechanisms, among them involving increased Wnt signaling to cause more favorable ratios of OPG and RANKL for the inhibition of osteoclastogenesis. The present study indicates that the effects of bone reloading on SCI- related bone remodeling occurred independently of the effects of higher CNS centers on bone.
PubMed ID
Total Samples
12

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...