Description
FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE 1 (FAR1) are two transposase-derived transcription factors initially identified as the key components in phytochrome A signaling and recently shown to function in the circadian clock. However, whether FHY3 and FAR1 are involved in other processes of plant development remains largely unknown. Here, we explored chromatin immunoprecipitation-based sequencing (ChIP-seq) analysis to identify 1745 and 1171 FHY3 direct binding target genes in darkness and far-red light conditions, respectively in the Arabidopsis thaliana genome. This analysis revealed that FHY3 preferentially binds to the gene promoters through the previously identified typical FHY3/FAR1 binding motif. Interestingly, FHY3 also binds to two novel motifs in the 178-bp repeats of the Arabidopsis centromere regions in vivo. Comparison between the ChIP-seq and microarray data indicates that FHY3 regulates the expression of 196 and 85 genes in dark and far-red respectively by directly binding to their promoters. FHY3 also co-regulates a number of common target genes with PHYTOCHROME INTERACTING FACTOR 3-LIKE 5 (PIL5) and ELONGATED HYPOCOTYL 5 (HY5). Moreover, our genome-wide identification of FHY3 direct target genes ultimately led to the discovery and validation of a new role of FHY3 in controlling chloroplast development, by directly activating the expression of ACCUMULATION AND REPLICATION OF CHLOROPLASTS5 (ARC5), a key gene regulating chloroplast constriction and division. Taken together, our data suggest that FHY3 is involved in regulating multiple facets of plant development, thus providing new insights into the functions of this type of transposase-derived transcription factors.