Description
Human induced pluripotent stem (iPS) cells are capable of differentiating into derivatives of the three embryonic germ layers both in vitro and in vivo. To date the the molecular differences between teratoma-forming cells and non-teratoma-forming cells has not been analysed. A cell line, B1, bears typical ES cell-like morphology, expression of pluripotency-associated genes, and in vitro pluripotency capacity, but fails to form teratomas after subcutaneously injected into immune-deficient mice based on histological analysis. Besides histological analysis, we characterized the tumors derived from line B1, and teratomas derived from bona fida iPS and ES (line H1) cells respectively, using microarray-based gene expression analysis. The expression levels of pluripotency-associated markers in B1 cells were comparable to that in iPS and ES cells, while the complexity of tissue expression commitment was decreased upon spontaneous differentiation of B1 cells as compared to iPS and ES cells.