Description
To model the effect of Pten loss on breast cancer, we deleted Pten using a floxed allele and the deleter lines MMTV-Cre(NLST), which targets stem/bi-potent progenitor cells, and WAP-Cre, which targets CD24-positive, pregnancy-identified stem cells/alveolar progenitors. Mammary tumors were detected in WAP-Cre:Ptenf/f females with a latency of 15.2 months. By 18 months, nearly all mice had succumbed to cancer. MMTV-Cre:Ptenf/f mice developed mammary tumors after a longer latency of 26.4 months and reduced penetrance (70%) compared to WAP-Cre:Ptenf/f mice. Tumors from both models were heterogeneous, consisting primarily of differentiated adenocarcinoma (adenomyoepithelioma; ~70%) and adenosquamous carcinoma (20-25%). In addition, a small fraction of tumors was classified as acinar and poorly differentiated adenocarcinoma (4-7%) and adenosarcoma (3-4%). To test the consequences of combined Pten and p53 gene mutation on breast cancer, we deleted both genes via MMTV-Cre or WAP-Cre. Kaplan-Meier tumor free survival curves revealed that WAP-Cre:Ptenf/f:p53f/f and MMTV-Cre:Ptenf/f:p53f/f females developed tumors with reduced latency of 11.3 and 9.8 months, compared with 15.2, 26.4, and 16.9 months for single-mutant WAP-Cre:Ptenf/f, MMTV-Cre:Ptenf/f or MMTV-Cre:p53f/f mice, respectively. In contrast to the heterogeneity of Pten tumors and small percentage of adenosarcomas in these mice, ~70% of Pten:p53 lesions were histologically classified as adeno-sacrcomatoid-like or mesenchymal-like breast cancer, with the rest exhibiting mixed mesenchymal plus adenocarcinomas and differentiated adenocarcinomas. The adeno-sacrcomatoid-like tumors expressed the mesenchymal markers vimentin, K5, SMA, N-cadherin and desmin but not ER, as well as islands of luminal-like K18 expressing cells surrounded by a layer of K14-positive cells.