Description
Recently, hypoxia via the transcription factor HIF-1a has been implicated to play an important role for the fate of the adaptive immune response by regulatory T cells (Treg) and T helper 17 cells (TH17) in the mouse model. However, the reports on the effect of HIF-1a are conflicting and so far no functional data in the human system are available. Therefore, we analyzed the effect of hypoxia and HIF-1a on Treg and TH17 in the human system. FACS, western blot and reporter assays clearly demonstrated that hypoxia does not up-regulate the level of HIF-1a in CD4+ T cells (THC) and microarray analysis revealed no change of the transcriptome comparing normoxia vs. hypoxia. Furthermore, we could show that HIF-1a is almost exclusively regulated via NF-kB and NFAT, whereas hydroxylation and subsequent degradation of HIF-1a had little to no effect. In addition, we showed that HIF-1a is essential for nTreg mediated suppression and for IL-17A secretion of TH17, but not for TH17 lineage commitment measured by RORt expression. In conclusion, our results demonstrated that THC have a distinct regulation of HIF-1a protein levels, which was absolutely essential for Treg and TH17 function.