Description
The aim was to identify pathways and genes that are transcriptionally deregulated in osteosarcoma due to changes in CpG island DNA methylation. In order to identify candidates, we compared low passage cell cultures derived from a mouse model of osteosarcoma to mature osteoblasts derived by in vitro differentiation of the mouse bone marrow stromal cell line, Kusa4b10. Under cell culture osteoblastic differentiating conditions, Kusa4b10 cells acquire a mature osteoblastic phenotype (21 days). A potential role for DNA methylation in directing gene expression changes was established by integrating gene expression data with genome wide DNA methylation maps generated by methyl-DNA binding domain capture and NimbleGen promoter arrays (MBDCap-Chip).