github link
Accession IconGSE49036

Evidence for immune response, axonal dysfunction and reduced endocytosis preceding Lewy body pathology in the substantia nigra in Parkinsons disease

Organism Icon Homo sapiens
Sample Icon 28 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
Subjects with incidental Lewy body disease (iLBD) may represent the premotor stage of Parkinsons disease (PD). To identify molecular mechanisms underlying neuronal dysfunction and alpha--synuclein pathology in the premotor phase of PD, we investigated the transcriptome of post-mortem substantia nigra (SN) of iLBD, PD donors and age-matched controls with Braak alpha--synuclein stage ranging from 0-6. In Braak alpha--synuclein stages 1 and 2, we observed deregulation of pathways linked to axonal degeneration, unfolded protein response (UPR), immune response and endocytosis, including axonal guidance signaling, protein kinase A signaling, mTOR signaling, EIF2 signaling and clathrin-mediated endocytosis. In Braak stages 3 and 4, we observed a deregulation in pathways involved in protein translation and cell survival, including mTOR and EIF2 signaling. In Braak stages 5 and 6, we observed deregulation of pathways such as dopaminergic signaling, axonal guidance signaling and thrombin signaling. Throughout the progression of PD pathology, we observed a deregulation of mTOR, EIF2 and regulation of eIF4 and p70S6K signaling in the SN. This implicates that molecular mechanisms related to UPR, axonal dysfunction, endocytosis and immune response are an early event in PD pathology, and may hold the key to altering the disease progression in PD.
PubMed ID
Total Samples
28
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Disease
Disease stage
Processing Information
Additional Metadata
No rows found
Loading...