Description
Many studies have already shown the reprogramming of somatic cells into other cell types such as neural stem cells, blood progenitor cells, and hepatocytes by inducing combinations of transcription factors. One of the recent development in cellular reprogramming is the direct reprogramming, that can change cell fate towards different lineages. This strategy provides an alternative to the use of pluripotent stem cells ruling out the concerns of tumorigenicity caused by undifferentiated cell populations. Here, we generated induced oligodendrocyte progenitor cells (iOPCs) from mouse fibroblasts by direct reprogramming. The generated iOPCs are homogenous, self-renewing, and multipotent. Once differentiated, the somatic stem cells exhibit morphological and molecular characteristics of oligodendrocyte progenitor cells (OPCs). Thus, we demonstrated that terminally differentiated somatic cells can be converted into functional iOPCs by induction of transcription factors offering a new strategies to cure myelin disorders.