github link
Accession IconGSE52064

DRM complex mutant lin-54 vs. H3K36 methyltransferase mutant mes-4 vs. lin-54; mes-4 double mutant vs. wild type C.elegans germline

Organism Icon Caenorhabditis elegans
Sample Icon 12 Downloadable Samples
Technology Badge Icon Affymetrix C. elegans Genome Array (celegans)

Submitter Supplied Information

Description
Here we uncover antagonistic regulation of transcript levels in the germline of Caenorhabditis elegans hermaphrodites. The histone methyltransferase MES-4 marks genes expressed in the germline with methylated Lys36 on histone H3 (H3K36me) and promotes their transcription; MES-4 also represses genes normally expressed in somatic cells and genes on the X chromosomes. The DRM complex, which includes E2F/DP and Retinoblastoma homologs, affects germline gene expression and prevents excessive repression of X-chromosome genes. Using genome-scale analyses of germline tissue, we show that common germline-expressed genes are activated by MES-4 and repressed by DRM, and that MES-4 and DRM co-bind many germline-expressed genes. Reciprocally, MES-4 represses and DRM activates a set of autosomal soma-expressed genes and overall X-chromosome gene expression. Mutations in mes-4 or the DRM subunit lin-54 oppositely skew target transcript levels and cause sterility; a double mutant restores near wild-type transcript levels and germ cell development. Together, yin-yang regulation by MES-4 and DRM ensures transcript levels appropriate for germ cell function, elicits robust but not excessive dampening of X-chromosome-wide transcription, and may poise genes for future expression changes. Our study reveals that conserved transcriptional regulators implicated in development and cancer counteract each other to fine-tune transcript dosage.
PubMed ID
Total Samples
12
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Processing Information
Additional Metadata
No rows found
Loading...