Description
Microglia are tissue macrophages of the central nervous system (CNS) that control tissue homeostasis, and as such they are crucially important for organ integrity. Microglia dysregulation is thought to be causal for a group of neuropsychiatric, neurodegenerative and neuroinflammatory diseases, called microgliopathies. However, how the intracellular stimulation machinery in microglia is controlled is poorly understood. By using expression studies, we identified the ubiquitin-specific protease (Usp) 18 in white matter microglia that essentially contributes to microglial quiescence under homeostatic conditions. We further found that microglial Usp18 negatively regulated the activation of STAT1 and concomitant induction of interferon-induced genes thereby disabling the termination of IFN signalling. Unexpectedly, the Usp18-mediated feedback loop was independent from the catalytic domain of the protease but instead required the interacting region of Ifnar2. Additionally, the absence of Ifnar1 completely rescued microglial activation indicating a tonic IFN signal mediated by receptor interactions under non-diseased conditions. Finally, conditional depletion of Usp18 only in myeloid cells significantly enhanced the disease burden in a mouse model of CNS autoimmunity, increased axonal and myelin damage and determined the spatial distributions of CNS lesions that shared the same STAT1 signature as myeloid cells found in active multiple sclerosis (MS) lesions. These results identify Usp18 as novel negative regulator of microglia activation, demonstrate a protective role of the IFNAR pathway for microglia and establish Usp18 as potential therapeutic target for the treatment of MS.