Description
Animal models have enhanced our understanding of the pathogenesis of autoimmune diseases. For these models, genetically identical, inbred mice have commonly been used. Different inbred mouse strains, however, show a high variability in disease manifestation. Identifying the factors that influence this disease variability could provide unrecognized insights into pathogenesis. We established a novel antibody transfer-induced model of epidermolysis bullosa acquisita (EBA), an autoimmune disease characterized by (muco)-cutaneous blistering caused by anti-type VII collagen (COL7) autoantibodies. Blistering after anti-COL7 IgG (directed against the von-Willebrand-factor A like domain 2) transfer showed clear variability among inbred mouse strains; i.e. severe cutaneous blistering and inflammation in C57Bl/6J, and absence of skin lesions in MRL/MpJ mice. The transfer of anti-COL7 IgG into irradiated, EBA-resistant MRL/MpJ mice, rescued by transplantation with bone marrow from EBA-susceptible B6.AK-H2k mice, induced blistering. To the contrary, irradiated EBA-susceptible B6.AK-H2k mice that were rescued using MRL/MpJ bone marrow were devoid of blistering. In vitro, immune complex activation of neutrophils from C57Bl/6J or MRL/MpJ mice showed an impaired ROS release from the latter, whereas no differences were observed after PMA activation. This finding was paralleled by divergent expression profiles of immune-complex activated neutrophils from either C57Bl/6J or MRL/MpJ mice. Collectively, we demonstrate that radiosensitive cells determine the varying extent of skin inflammation and blistering in the end-stage effector phase of EBA.