Description
microRNA are aberrantly expressed in acute myeloid leukemia (AML), and clinically may have diagnostic, prognostic, and therapeutic value. We identify one such microRNA, miR-196b, is essential for MLL-AF9 leukemia initiation and maintenance. To discover how miR-196b contributes to leukemogenesis, we utilized multiple unbiased approaches that identified and functionally screened miR-196b target activity in AML. Our studies resolved how conflicting networks of miRNA-regulated targets are integrated during leukemogenesis. This work uncovered two miR-196b direct targets, the cell cycle regulator Cdkn1b (p27Kip1) and Polycomb group member Phc2, that independently cooperate with MLL-AF9 to promote leukemogenesis by regulating stem cell transcriptional programs. Finally, we found that therapeutic disruption of miR-196b direct targeting of Cdkn1b suppresses leukemogenesis.