github link
Accession IconGSE94706

iPSCs from patients with NBS as a model uncovering disease mechanisms and a screening platform for anti-oxidants modifying genomic stability [fibroblasts]

Organism Icon Homo sapiens
Sample Icon 8 Downloadable Samples
Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip (controls added), Illumina HumanHT-12 V4.0 expression beadchip

Submitter Supplied Information

Description
Nijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder, first described 1981 in Nijmegen, Holland. The characteristics of NBS include genomic instability (resulting in early onset of malignancies), premature aging, microcephaly and other growth retardations, immune deficiency, and impaired puberty and fertility in females. The consequence of these manifestations is a severe decrease in average life span, caused by cancer or infection of the respiratory and urinary tract. We reprogrammed fibroblasts from NBS patients into induced pluripotent stem cells (iPSCS) to bypass premature senescence and to generate an unlimited cell source for modeling purposes. We screened the influence of antioxidants on intracellular levels of ROS and DNA damage and found that EDHB was able to decrease DNA damage in the presence of high oxidative stress. Furthermore, we found that NBS fibroblasts, but not NBS-iPSCs were more susceptible to the induction of DNA damage than their normal counterparts. We performed global transcriptome analysis comparing NBS to normal fibroblasts and NBS-iPSCs to hESCs. There, we found, that TP53 was activated and cell cycle genes broadly down-regulated in NBS fibroblasts and up-regulation of glycolysis specifically in NBS-iPSCs.
PubMed ID
Total Samples
8
Submitter’s Institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Disease
Disease stage
Processing Information
Additional Metadata
No rows found
Loading...