github link
Accession IconSRP049391

Next-Generation Sequencing Analysis Reveals Differential Expression Profiles of miRNA-mRNA Target Pairs in KSHV-Infected Cells [mRNA-Seq]

Organism Icon Homo sapiens
Sample Icon 6 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
This SuperSeries is composed of the SubSeries listed below. Purpose: Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) causes several lymphoproliferative disorders, including KS, a common AIDS-associated malignancy. Cellular and viral microRNAs (miRNAs) have been shown to play important roles in regulating the expression of genes in oncogenesis. Herpesviruses, including KSHV, encode for miRNAs that are involved in angiogenesis, inflammation and apoptosis. A better knowledge of the miRNA-mediated pathways that regulate KSHV infection is therefore essential for an improved understanding of viral infection and pathogenesis. Methods: In this study, we used deep sequencing to analyze miRNA, both viral and human, and mRNA expression in KS tumor-derived human cells. Results: This approach revealed 153 differentially expressed human miRNAs between KSHV-positive and -negative cells. Differential expression of eight miRNAs was independently confirmed by qRT-PCR. We additionally showed that a majority (~73%) of KSHV-regulated miRNAs are down-regulated, including most members of the 14q32 miRNA cluster. Specifically, human miR-409-3p, which is known to target the pro-angiogenic growth factor angiogenin and the inflammation marker fibrinogen-beta, was significantly down-regulated in KSHV-infected cells based on deep sequencing and qRT-PCR. Despite this substantial down-regulation of cellular miRNAs, hsa-miR-708-5p was significantly up-regulated by KSHV and has been shown to directly inhibit pro-apoptotic protease Caspase-2. Finally, we evaluated to what extent there was an inverse correlation between miRNA and mRNA expression levels. Using filtered datasets, we identified relevant canonical pathways that were significantly enriched. Conclusion: Taken together, our data demonstrate that most human miRNAs affected by KSHV are repressed and our findings highlight the relevance of studying the post-transcriptional gene regulation of miRNAs for KSHV-associated malignancies. Overall design: Refer to individual Series. 6 samples analyzed (one cell type). Two experimental conditions: uninfected vs. chronically KSHV-infected cells (n=3). Two sequencing platforms: microRNA-Seq and mRNA-Seq.
PubMed ID
Total Samples
6
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...