github link
Accession IconSRP067350

A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity

Organism Icon Drosophila melanogaster
Sample Icon 24 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), which functions to increase ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2, Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitute a functionally conserved transcription factor (TF) network, previously shown to pattern the segmentation of the leg, that patterns the developing olfactory tissue. Precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines Overall design: Time-course RNAseq across 4 developmental stages, inlcuding flies mutant for rotund gene (rn), heterozygotes and wildtype
PubMed ID
Total Samples
24
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Subject
Processing Information
Additional Metadata
No rows found
Loading...