github link
Accession IconSRP077998

Next Generation Sequencing Facilitates Quantitative Analysis of Human Primary and Pluripotent Stem Cell-Derived Epicardial Cell Transcriptomes

Organism Icon Homo sapiens
Sample Icon 16 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500

Submitter Supplied Information

Description
Next-generation sequencing (NGS) has significantly advanced the elucidation of developmental signaling mechanisms that are important for different cell lineage formation from human pluripotent stem cells (hPSCs). We report here the application of RNA-sequencing technology for transcriptome profile of human primary and hPSC-derived epicardial cell, and compare to those of other cell lineages including hPSCs, mesoderm, cardiomcyotyes. Eight epicaridal cell samples from four different hPSC lines and four different donors were performed in IIIumina HiSeq2500. The resulting sequence reads (about 20 million reads per sample) were mapped to human genome (hg19) using HISAT, and the RefSeq transcript levels (RPKMs) were quantified using the python script rpkmforgenes.py. Our RNA-seq data confirmed the stable expression of key epicardial cell markers including WT1, TBX18, TCF21, ALDH1A2 and ZO1, and the gene set enrichment analysis (GSEA) showed enrichment in extracellular matrix related pathways and keratinocyte (epithelial) differentiation. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to epicardial function. This study represents the first detailed analysis of epicardial transcriptomes generated by RNA-seq technology, providing insight into the mechanisms underlying the differentiation of hPSCs into epicardial cells. Overall design: Epicardial transcriptome profiles of 8 different samples from 4 hPSC lines and donors were generated by RNA-seq technology using IIIumina HiSeq2500
PubMed ID
Total Samples
16
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Subject
Processing Information
Additional Metadata
No rows found
Loading...