github link
Accession IconSRP094496

Correlating anatomy and function with gene expression in individual neurons by combining in vivo labeling, patch clamp and single cell RNA-seq

Organism Icon Mus musculus
Sample Icon 1692 Downloadable Samples
Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 4000

Submitter Supplied Information

Description
The classification of neurons into distinct types is an ongoing effort aimed at revealing and understanding the diversity of the components of the nervous system. Recently available methods allow us to determine the gene expression pattern of individual neurons in the mammalian cerebral cortex to generate powerful categorization schemes. For a thorough understanding of neuronal diversity such genetic categorization schemes need to be combined with traditional classification parameters like position, axonal projection or response properties to sensory stimulation. Here we describe a method to link the gene expression of individual neurons with their position, axonal projection or sensory response properties. Neurons are labeled in vivo based on their anatomical or functional properties and, using patch clamp pipettes, their RNA individually harvested in vitro for RNAseq. With this method we can determine the genetic expression pattern of functionally and anatomically identified individual neurons. Overall design: single cortical neurons were patch clamped and the RNA harvested; single neuron mRNA profiles were generated by deep sequencing
PubMed ID
Total Samples
1692
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...