github link
Accession IconSRP096081

A Histone Deacetylase 3-Dependent Pathway Delimits Peripheral Myelin Growth and Functional Regeneration [RNA-seq]

Organism Icon Mus musculus
Sample Icon 4 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
Schwann cell remyelination defects impair functional restoration after nerve damage, contributing to peripheral neuropathies. The mechanisms that mediate remyelination block remain elusive. Upon small-molecule epigenetic screening, we identified HDAC3, a histone-modifying enzyme, as a potent inhibitor of peripheral myelinogenesis. Inhibition of HDAC3 markedly enhances myelin growth and regeneration, and improves functional recovery after peripheral nerve injury. HDAC3 antagonizes myelinogenic neuregulin/PI3K/AKT signaling axis. Moreover, genome-wide profiling analyses reveal that HDAC3 represses pro-myelinating programs through epigenetic silencing, while coordinating with p300 histone acetyltransferase to activate myelination-inhibitory programs that include HIPPO signaling effector TEAD4 to inhibit myelin growth. Schwann-cell-specific deletion of either Hdac3 or Tead4 results in a profound increase in myelin thickness in sciatic nerves. Thus, our findings identify the HDAC3-TEAD4 network as a dual-function switch of cell-intrinsic inhibitory machinery that counters myelinogenic signals and maintains peripheral myelin homeostasis, highlighting the therapeutic potential of transient HDAC3 inhibition for improving peripheral myelin repair. Overall design: 4 RNA-Seq samples from P6 sciatic nerves of Ctrl and Hdac3-cKO mice (Cnpcre-Ctrl, Cnpcre-cKO, Dhhcre-Ctrl, Dhhcre-cKO)
PubMed ID
Total Samples
4
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Subject
Processing Information
Additional Metadata
No rows found
Loading...