github link
Accession IconSRP115384

Regulation of posterior body and ectodermal morphogenesis in zebrafish by localized Yap1 and Wwtr1

Organism Icon Danio rerio
Sample Icon 4 Downloadable Samples
Technology Badge IconNextSeq 500

Submitter Supplied Information

Description
The vertebrate embryo undergoes a series of dramatic morphological changes as the body extends to form the complete anterior-posterior axis during the somite-forming stages. The molecular mechanisms regulating these complex processes are still largely unknown. We show that the Hippo pathway transcriptional coactivators Yap1 and Wwtr1 are specifically localized to the ectoderm and notochord, and play a critical and unexpected role in posterior body extension by regulating the assembly of Fibronectin underneath the ectoderm and surrounding the notochord. We also find that Yap1/Wwtr1, also acting through Fibronectin, have an essential role in the ectodermal morphogenesis necessary to form the initial dorsal and ventral fins, a process that had been thought to involve bending of an epithelial sheet, but which we now show involves active cell migration. Our results reveal how the Hippo pathway transcriptional program, localized to two specific tissues, acts to control essential morphological events in the vertebrate embryo. Overall design: two biological replicates of tails of yap1/wwtr1 double homozygous mutants and siblings (24 each at 16-18 somite stage) were collected for RNAseq. Tails are tissues of the posterior end until the third newest somite (S-III).
PubMed ID
Total Samples
4
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Subject
Processing Information
Additional Metadata
No rows found
Loading...