github link
Accession IconSRP127007

The spatial position of budding yeast chromosomes affects gene expression

Organism Icon Saccharomyces cerevisiae
Sample Icon 35 Downloadable Samples
Technology Badge IconIllumina HiSeq 2000

Submitter Supplied Information

Description
The three-dimensional (3D) organization of chromosomes can influence transcription. However, the frequency and magnitude of these effects is still controversial. To determine how changes in chromosome positioning affect transcription we characterized nuclear organization and global gene expression after large-scale chromosomal rearrangements in budding yeast. We used computational modelling and single cell imaging to determine chromosome position and integrated these data with genome-wide transcriptional profiles from RNA sequencing. Chromosome displacement relative to the nuclear periphery has mild but widespread and significant effects on transcription. Our study suggests that basal transcriptional activity is sensitive to radial changes on chromosomal position, and provides support for the functional relevance of budding yeast chromosome-level 3D organization in gene expression. Overall design: We analysed 42 samples in total: wildtype (409) strain (4 replicas), mutant strain 524 (4 replicas), mutant strain 527 (4 replicas), mutant strain 1138 (4 replicas), mutant strain 1228 (4 replicas), mutant strain 1379 (4 replicas), mutant strain 1387 (4 replicas), mutant strain 1380 (4 replicas), mutant strain 1388 (4 replicas), mutant strain 1788 (3 replicas), mutant strain 1793 (3 replicas)
PubMed ID
Total Samples
42
Submitter’s Institution
No associated institution

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Subject
Processing Information
Additional Metadata
No rows found
Loading...