Description
BRAF(V600E) mutant melanomas treated with inhibitors of the BRAF and MEK kinases almost invariably develop resistance, which is frequently caused by reactivation of the Mitogen Activated Protein Kinase (MAPK) pathway. To identify novel treatment options for such patients, we searched for acquired vulnerabilities of MAPK inhibitor-resistant melanomas. We find that resistance to BRAF+MEK inhibitors is associated with increased levels of reactive oxygen species (ROS). Subsequent treatment with the histone deacetylase inhibitor (HDACi) vorinostat represses SLC7A11 that leads to a lethal increase in the already elevated levels of ROS in drug-resistant cells, thereby causing selective apoptotic death of only the drug resistant tumor cells. Consistently, treatment of BRAF inhibitor-resistant melanoma with HDACi in mice results in a dramatic tumor regression. In a study in patients with advanced BRAF+MEK inhibitor resistant melanoma, we find that HDACi can selectively ablate drug-resistant tumor cells, providing clinical proof of concept for the novel therapy identified here. Overall design: one replicate of RNA Seq data A375, A375R, A375DR vorinostat treated and patient samples pre- post- vorinostat treatment