Luminal breast cancers express estrogen (ER) and progesterone (PR) receptors, and respond to endocrine therapies. However, some ER+PR+ tumors display intrinsic or acquired resistance, possibly related to PR. Two PR isoforms, PR-A and PR-B, regulate distinct gene subsets that may differentially influence tumor fate. A high PR-A:PR-B ratio is associated with poor prognosis and tamoxifen resistance. We speculate that excessive PR-A marks tumors that will relapse early. Here we address mechanisms by which PR-A regulate transcription, focusing on SUMOylation. We use receptor mutants and synthetic promoter/reporters to show that SUMOylation deficiency or the deSUMOylase SENP1 enhance transcription by PR-A, independent of the receptors dimerization interface or DNA binding domain. De-SUMOylation exposes the agonist properties of the antiprogestin RU486. Thus, on synthetic promoters, SUMOylation functions as an independent brake on transcription by PR-A. What about PR-A SUMOylation of endogenous human breast cancer genes? To study these, we used gene expression profiling. Surprisingly, PR-A SUMOylation influences progestin target genes differentially, with some upregulated, others downregulated, and others unaffected. Hormone-independent gene regulation is also PR-A SUMOylation dependent. Several SUMOylated genes were analyzed in clinical breast cancer database. In sum, we show that SUMOylation does not simply repress PR-A. Rather, it regulates PR-A activity in a target selective manner including genes associated with poor prognosis, shortened survival, and metastasis.
SUMOylation Regulates Transcription by the Progesterone Receptor A Isoform in a Target Gene Selective Manner.
Specimen part, Treatment
View SamplesPsychological, psychosocial and physical stress are major risk factors, which enhance the development of sporadic late-onset Alzheimer`s disease. The chronic unpredictable mild stress model mimics those risk factors and triggers signs of neurodegeneration and neuropathological features of sporadic AD such as tau hyperphosphorylation and enhanced amyloid beta generation. The study investigated the impact of chronic unpredictable mild stress on signs of neurodegeneration by analyzing hippocampal gene expression with whole genome microarray gene expression profiling.
Inhibition of ACE Retards Tau Hyperphosphorylation and Signs of Neuronal Degeneration in Aged Rats Subjected to Chronic Mild Stress.
Sex, Age, Specimen part
View SamplesCD8+ T-cells inhibit virus replication in SIV-infected rhesus macaques (RM). However, it is not clear how SIV infection is controlled in germinal center during chronic SIV infection and limited information exists on the characteristics of CXCR5+ CD8 T cells during chronic SIV/HIV infection. In this study, we used functional genomics to investigate characteristic features and potential mechanisms of CXCR5+ and CXCR5- SIV specific CD8 T cells for the control of pathogenic SIV infection. Six chronically SIV infected RMs, three SIVE660 infected and three SIV mac251 infected that are positive for Mamu A01 allele were selected and SIV-specific CXCR5+ and CXCR5- CD8 T cells were sorted based on CXCR5 expression. RNA from sorted cells were extracted and microarray were performed and analysed. Principal component analysis demonstrated that overall gene expression difference between CXCR5+ and CXCR5- SIV-specific CD8 T cells. Interestingly, the CXCR5+ CD8 T cells revealed a distinct gene signature pattern when compared to CXCR5- CD8 T cells. Unlike the CXCR5- CD8 T cells, the CXCR5+ CD8 T cells expressed higher levels of genes associated with Tfh CD4 T cells such as the master transcription factor Bcl6, CD200, and CTLA4 as well as markers associated with Th2 CD4 T cells such as IL-4R (CD124), CCR4, STAT6, NFATC, and IL-10. Effector molecules typically observed in cytotoxic CD8 T cells such as granzyme A, B, and K were expressed at lower levels on CXCR5+ CD8 T cells compared to their CXCR5- counterparts. CXCR5+ CD8 T cells also expressed higher levels of molecules associated with co-stimulation/antigen presentation such as CD40, CD83, 41BBL and MAMU-DRA. The CXCR5+ CD8 also expressed higher levels of inhibitory receptors such as CD200 and SPRY2 but lower levels of other inhibitory receptors CD160 and CD244. The functional consequence of the expression of these molecules is yet to be determined. Additionally, CXCR5+ CD8 T cells expressed higher levels of the anti-apoptotic gene Bcl-2 and lower levels of the pro-apoptotic gene annexin, suggestive of their better survival potential during chronic SIV infection. Collectively, these results demonstrate that SIV specific CXCR5+ CD8 T cells possess a unique gene expression signature compared to SIV-specific CXCR5- CD8 T cells.
Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection.
Specimen part
View SamplesGrowing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of astrocytes from human induced pluripotent stem cells (hiPSCs), via a neural progenitor cell (NPC) intermediate. Using this method, we generated hiPSC-derived astrocyte populations (hiPSC-astrocytes) from 42 NPC lines (derived from 30 individuals) with an average of ~90% S100ß-positive cells. Transcriptomic analysis demonstrated that the hiPSC-astrocytes are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our novel protocol is a reproducible, straightforward (single media) and rapid (<30 days) method to generate homogenous populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders. Overall design: 6 hiPSC-derived astrocyte lines were generated. Total RNA were extracted from these hiPSC-astrocytes as well as 2 primary astrocyte lines and analyzed by RNA sequencing.
An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells.
Sex, Specimen part, Subject
View SamplesAberrant signal transduction contributes substantially to leukemogenesis. The Janus kinase 1 (JAK1) gene encodes a cytoplasmic tyrosine kinase that noncovalently associates with a variety of cytokine receptors and plays a nonredundant role in lymphoid cell precursor proliferation, survival, and differentiation. Somatic mutations in JAK1 occur in individuals with acute lymphoblastic leukemia (ALL). JAK1 mutations were more prevalent among adult subjects with the T cell precursor ALL, where they accounted for 18% of cases, and were associated with advanced age at diagnosis, poor response to therapy, and overall prognosis
ALL-associated JAK1 mutations confer hypersensitivity to the antiproliferative effect of type I interferon.
Specimen part
View SamplesThe initial segment of the epididymis is vital for male fertility, therefore, it is important to understand the mechanisms that regulate this important region. Deprival of testicular luminal fluid factors/lumicrine factors from epididymis, a subset of cells within the initial segment undergo apoptosis. In this study, microarray analyses was used to examine early changes in the downstream signal transduction pathways following the loss of lumicrine factors, and we discovered the following cascade of events leading to loss of protection and eventual apoptosis. First, mRNA expression of several key components of ERK pathway decreased sharply after 6 hours of loss protection from testicular lumicrine factors. After 12 hours, the levels of mRNA expression of STAT and NF-B pathways components increased, mRNA expression of genes encoding cell cycle inhibitors increased. After 18 hours of loss protection from testicular lumicrine factors, apoptosis was observed in the initial segment. In conclusion, testicular lumicrine factors protect the cells of the initial segment by activating ERK pathway, repressing STAT and NF-B pathways, and preventing a cascade of reactions leading to apoptosis.
Testicular lumicrine factors regulate ERK, STAT, and NFKB pathways in the initial segment of the rat epididymis to prevent apoptosis.
Sex, Specimen part, Time
View SamplesAbstract: Cellular senescence, an integral component of aging and cancer, arises in response to diverse triggers, including telomere attrition, macromolecular damage, and signaling from activated oncogenes. At present, senescent cells are identified by the combined presence of multiple traits, such as senescence-associated protein expression and secretion, DNA damage, and ß-galactosidase activity; unfortunately, these traits are neither exclusively nor universally present in senescent cells. To identify robust shared markers of senescence, we have performed RNA-sequencing analysis across 8 diverse models of senescence triggered in human diploid fibroblasts (WI-38, IMR-90) and endothelial cells (HUVEC, HAEC) by replicative exhaustion, exposure to ionizing radiation or doxorubicin, and expression of the oncogene HRASG12V. The intersection of the altered transcriptomes revealed 47 RNAs consistently elevated and 26 RNAs consistently reduced across all senescence models, including many protein-coding mRNAs and some long noncoding RNAs. We propose that these shared transcriptome profiles will enable the identification of senescent cells in vivo, the investigation of their roles in aging and malignancy, and the development of strategies to target senescent cells therapeutically. Overall design: Transcriptomic analysis of various cell line models of senescence and their respective controls
Transcriptome signature of cellular senescence.
Specimen part, Cell line, Treatment, Subject
View SamplesInterleukin-6 (IL-6) is a proinflammatory cytokine that exerts a wide range of cellular, physiological and pathophysiological responses. Pyrrolidine dithiocarbamate (PDTC) antagonizes the cellular responsiveness to IL-6 through impairment in STAT3 activation and downstream signaling. Here, a transcriptional profiling was conducted as a basis for understanding the biological properties of PDTC in human HepG2 hepatocarcinoma cells. A global comparison of mRNA identified a highly significant difference of dysregulated gene expression transduced by PDTC versus IL-6 in HepG2 cells. Through an unbiased pathway analysis method, we have uncovered the mammalian target of rapamycin (mTOR) pathway together with rapid and dynamic alterations in REDD1 (regulated in development and DNA damage response 1) expression as one of the underlying molecular mechanisms responsible for IL-6 resistance to PDTC. Quantitative PCR and Western blot analyses validated the microarray data by showing the reciprocal pattern of REDD1 expression and subsequent mTOR inhibition after stimulation with PDTC relative to IL-6.
Impact of pyrrolidine dithiocarbamate and interleukin-6 on mammalian target of rapamycin complex 1 regulation and global protein translation.
Cell line
View SamplesDifferential gene expression analysis of oesophageal cells stimulated with a low pH environment. Study designed to identify pathways involved in progression of gastro-oesophageal reflux disease through Barrett's oesophagus to adenocarcinoma. Identified many subsets of genes with involvement in pathogenesis.
Low pH induces co-ordinate regulation of gene expression in oesophageal cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
De Novo Epigenetic Programs Inhibit PD-1 Blockade-Mediated T Cell Rejuvenation.
Specimen part, Treatment
View Samples