This SuperSeries is composed of the SubSeries listed below.
CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells.
Specimen part, Cell line
View SamplesThe resultant heat map demonstrates the maturation of CD13+/ROR2+ cells as they proceed through cardiac differentiation. Overall design: RNA-seq analysis was preformed on RNA samples from undifferentiated hESCs, 13R2+ and 13R2- populations from day 3, 13R2+/NKX2-5+ and 13R2+/NKX2-5- from day 7, and 13R2+/NKX2-5+/a-MHC+ and 13R2+/NKX2-5+/MHC- from day 14
CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells.
No sample metadata fields
View SamplesMicroarray analysis of isolated hES cells from day 3 of cardiac differentiation was used to identify differences between MIXL1eGFP+ and MIXL1eGFP- transcriptomes. We identified 6,757 differentially regulated genes, of which 2,520 were upregulated 2-fold in the eGFP+ (MIXL1+) mesoderm population
CD13 and ROR2 Permit Isolation of Highly Enriched Cardiac Mesoderm from Differentiating Human Embryonic Stem Cells.
Specimen part
View SamplesDilated cardiomyopathy (DCM) is the leading cause of heart failure and transplantation worldwide. We used iPSCs to model this disease and compared gene expression change before and after gene therapy of cardiomyocytes derived from DCM-specific iPSCs.
Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy.
Specimen part
View SamplesBaseline gene expression of patient dermal fibroblasts derived iPSCs generated by lentiviral Yamanaka 4 factors. We used microarrays to detail the global gene expression of Hypertrophic cardiomyopathy (HCM) patient specific iPSCs.
Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells.
Specimen part, Disease, Disease stage
View SamplesAim: Differentiation of cardiac fibroblasts (Fb) into myofibroblasts (MyoFb) is responsible for connective tissue buildup in myocardial remodeling. We examined reversibility of MyoFb differentiation. Methods and Results: Adult rat cardiac Fb were cultured on a plastic substratum providing mechanical stress, with conditions to obtain different Fb phenotypes. Fb spontaneously differentiated to proliferating MyoFb (p-MyoFb) with stress fiber formation decorated with alpha-smooth muscle actin (-SMA). Transforming growth factor-1 (TGF-1) promoted terminal differentiation into -SMA positive MyoFb showing near absence of proliferation i.e. non-p-MyoFb (2-fold increase in cell number after 12 days vs 11-fold for p-MyoFb). SD-208, a TGF--receptor-I kinase blocker, inhibited p-MyoFb differentiation as shown by stress fiber absence, low levels of -SMA protein expression, and high levels of proliferation (32-fold increase after 12 days). Fb seeded in collagen matrices induced no contraction, whereas p-MyoFb and non-p-MyoFb induced 2.5- and 4-fold contraction. Fb produced low levels of collagen and secreted high levels of IL-10. Non-p-MyoFb showed high collagen production and high MCP-1 and TIMP-1 secretion. Transcriptome analysis indicated differential gene expression between all phenotypes. Dedifferentiation of p-MyoFb, but not of non-p-MyoFb, was induced by SD-208 despite maintained stress, shown by stress fiber de-polymerization in 30% of p-MyoFb vs in 8% of non-p-MyoFb. Stress fiber de-polymerization could be induced by mechanical strain release in p-MyoFb and non-p-MyoFb (2 day culture in unrestrained 3-D collagen matrices). Only p-MyoFb showed true dedifferentiation after long-term 3-D culture. Conclusions: Both reduction in mechanical strain and TGF--receptor-I kinase inhibition can reverse p-MyoFb differentiation but not in non-p-MyoFb.
Reversible and irreversible differentiation of cardiac fibroblasts.
Sex, Specimen part
View SamplesOrgan transplant recipients (OTRs) on Cyclosporine A (CSA) are prone to catastrophic cutaneous squamous cell carcinoma (SCC). Allograft-sparing, cancer-targeting systemic treatments are unavailable. We have shown increased risk for catastrophic SCC in OTRs via CSA-mediated induction of Interleukin-22 (IL-22). Herein, we found CSA drives SCC proliferation and tumor growth through IL-22 and JAK/STAT pathway induction. We in turn inhibited SCC growth with an FDA-approved JAK 1/2 inhibitor, Ruxolitinib. In human SCC cells, greatest proliferative response to IL-22 and CSA treatment occurred in non-metastasizing lines. IL-22 treatment upregulated JAK1 and STAT1/3 in A431 SCC cells. JAK/STAT pathway genes were highly expressed in tumors from a cohort of CSA-exposed OTRs, and in SCC with high risk for metastasis. Compared to immunocompetent SCC, genes associated with innate immunity, response to DNA damage and p53 regulation were differentially expressed in SCC from OTRs. In nude mice engrafted with human A431 cells, IL-22 and CSA treatment increased tumor growth and upregulated IL-22 receptor, JAK1 and STAT 1/3 expression. Ruxolitinib treatment significantly reduced tumor volume and reversed the accelerated tumor growth. CSA and IL-22 exacerbate aggressive behavior in SCC. Targeting the IL-22 axis via selective JAK/STAT inhibition may reduce the progression of aggressive SCC in OTRs, without compromising immunosuppression.
Ruxolitinib inhibits cyclosporine-induced proliferation of cutaneous squamous cell carcinoma.
No sample metadata fields
View SamplesPD-L1 suppresses host immunity and promotes tumor growth. We investigated how IFN- regulates PD-L1 in the ovarian cancer microenvironment. In clinical samples, the number of stromal CTLs in peritoneally disseminated tumors was correlated with PD-L1 expression on the tumor cells, and the lymphocyte number was significantly related to the IFN- signature score. In mouse models, PD-L1 was induced in peritoneal disseminated tumors, where lymphocytes were prominent, but not in subcutaneous tumors. Depleting IFNGR1 resulted in lower PD-L1 expression and longer survival in peritoneal dissemination model. Injection of IFN- into subcutaneous tumors increased PD-L1 expression and tumor size, and PD-L1 depletion abrogated tumor growth. These data suggest that IFN- works as a tumor progressor through PD-L1 induction. The source of IFN- in ovarian cancer microenvironment and its biological effect to the tumor cells is unclear. The immortalized human ovarian surface epithelial cell line, HOSE-E7/hTERT (HOSE) was treated with IFN- and expression microarray analysis was performed, and probes showing significantly higher values in IFN--added group were termed IFN- signature genes (295 probes). We then applied this signature to our ovarian cancer microarray data, which included 75 ovarian cancer clinical samples, by means of ss-GSEA. IFN- signature score was strongly correlated to the number of infiltrating CD4-positive or CD8-positive lymphocytes in the tumors. These data suggest that the IFN- in the ovarian cancer microenvironment is derived from lymphocytes, and an IFN--rich microenvironment is strongly correlated to a lymphocyte-rich microenvironment.
IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer.
Specimen part
View SamplesThe patients with locally advanced squamous cervical cancer (SCC) were examined in this study. All patients received neoadjuvant chemotherapy followed by radical hysterectomy. Tumor response against NAC was determined based on RECIST criterior. Gene-expression profiles of SCC were determined using Human Genome GeneChip arrays U133.
Genomic profile predicts the efficacy of neoadjuvant chemotherapy for cervical cancer patients.
Specimen part
View SamplesThe source of IFN- in ovarian cancer microenvironment and its biological effect to the tumor cells is unclear. The immortalized human ovarian surface epithelial cell line, HOSE-E7/hTERT (HOSE) was treated with IFN- and expression microarray analysis was performed, and probes showing significantly higher values in IFN--added group were termed IFN- signature genes (295 probes). We then applied this signature to our ovarian cancer microarray data, which included 75 ovarian cancer clinical samples, by means of ss-GSEA. IFN- signature score was strongly correlated to the number of infiltrating CD4-positive or CD8-positive lymphocytes in the tumors. These data suggest that the IFN- in the ovarian cancer microenvironment is derived from lymphocytes, and an IFN--rich microenvironment is strongly correlated to a lymphocyte-rich microenvironment.
IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer.
Specimen part, Cell line, Treatment
View Samples