Infection with non-cytopathic bovine viral diarrhea virus (ncpBVDV) is associated with uterine disease and infertility. This study investigated the influence of ncpBVDV on immune functions of the bovine endometrium by testing the response to bacterial lipopolysaccharide (LPS) at the level of whole-transcriptomic gene expression. Analysis showed that approximately 30% of the 1,006 genes altered by LPS are involved in immune response. Many innate immune genes that typically respond to LPS were inhibited by ncpBVDV including those involved in pathogen recognition, inflammation, interferon response, chemokines, tissue remodeling, cell migration and cell death/survival. Infection with ncpBVDV can thus compromise immune function and pregnancy recognition thereby potentially predisposing infected cows to postpartum bacterial endometritis and reduced fertility.
Global transcriptomic profiling of bovine endometrial immune response in vitro. I. Effect of lipopolysaccharide on innate immunity.
Sex, Treatment
View SamplesDespite numerous observations of effects of estrogens on spermatogenesis, identification of estrogen-regulated genes in the testis is limited. We previously showed in rats, in which irradiation had completely blocked spermatogonial differentiation, that testosterone (T) suppression with GnRH-antagonist and antiandrogen stimulated spermatogenic recovery and addition of estradiol (E2) to this regimen accelerated this recovery. We report here the global changes in testicular cell gene expression induced by the E2 treatment. By minimizing the changes in other hormones and also having concurrent data on the regulation of the genes by those hormones, we were able to dissect the effects of estrogen on gene expression, independent of gonadotropin or T changes. Expression of 20 genes, largely in somatic cells, was up- or down-regulated between 2- and 5-fold by E2. There were also early germ cell genes whose expression increased but this was a result of a small increase in spermatogonial numbers. The striking enrichment of transcripts not corresponding to known genes among the E2-downregulated probes led to the identification of one as micro-RNA miR-34a. We propose that genes whose expression levels are altered in one direction by irradiation and in the opposite direction by both T suppression and E2 treatment are candidates for controlling the block in differentiation. Several genes, including insulin-like 3 (Insl3), satisfied those criteria. If they are indeed involved in the inhibition of spermatogonial differentiation, they may be candidate targets for clinical treatments to enhance recovery of spermatogenesis following gonadotoxic exposures, such as those resulting from cancer therapy.
Estrogen-regulated genes in rat testes and their relationship to recovery of spermatogenesis after irradiation.
Specimen part, Treatment
View SamplesConditional knockout of Snai1 in the mouse intestinal epithlium results in apoptotic loss of crypt base columnar cells and bias towards differentiation of secretory lineages. In vitro organoid cultures derived from Snail conditional knockout mice also undergo apoptosis when Snai1 is deleted.
Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium.
No sample metadata fields
View SamplesThe mammalian genome contains thousands of loci that transcribe long noncoding RNAs (lncRNAs), some of which are known to play critical roles in diverse cellular processes through a variety of mechanisms. While some lncRNA loci encode RNAs that act non-locally (in trans), emerging evidence indicates that many lncRNA loci act locally (in cis) to regulate expression of nearby genes—for example, through functions of the lncRNA promoter, transcription, or transcript itself. Despite their potentially important roles, it remains challenging to identify functional lncRNA loci and distinguish among these and other mechanisms. To address these challenges, we developed a genome-scale CRISPR-Cas9 activation screen targeting more than 10,000 lncRNA transcriptional start sites (TSSs) to identify noncoding loci that influence a phenotype of interest. We found 11 novel lncRNA loci that, upon recruitment of an activator, each mediate BRAF inhibitor resistance in melanoma. Most candidate loci appear to regulate nearby genes. Detailed analysis of one candidate, termed EMICERI, revealed that its transcriptional activation results in dosage-dependent activation of four neighboring protein-coding genes, one of which confers the resistance phenotype. Our screening and characterization approach provides a CRISPR toolkit to systematically discover functions of noncoding loci and elucidate their diverse roles in gene regulation and cellular function. Overall design: RNA-seq on A375 cells overexpressing candidate lncRNA or protein-coding gene.
Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood.
Specimen part, Cell line, Subject
View SamplesRNA-seq and ATAC-seq data to understand how gene regulation and chromatin accessibility correlates with function enrichment in CRISPR screen for melanoma drug resistance
Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood.
No sample metadata fields
View SamplesAnalysis of the human monocyte-derived macrophage (hMDM) transcriptional response to L. pneumophila infection at 8 hours post-infection
The transcriptome of Legionella pneumophila-infected human monocyte-derived macrophages.
Specimen part
View SamplesMicroglia play important roles in developmental and homeostatic brain function, and influence the establishment and progression of many neurological disorders. Here, we demonstrate that renewable human iPSCs can be efficiently differentiated to microglial-like cells (iMGL) to study neurological diseases, such as Alzheimer''s disease (AD). We find that iMGLs develop in vitro similarly to microglia in vivo and whole transcriptome analysis demonstrates that they are highly similar to adult and fetal human microglia. Functional assessment of iMGLs reveal that they secrete cytokines in response to inflammatory stimuli, migrate and undergo calcium transients, and robustly phagocytose CNS substrates. We also show novel use of iMGLs to examine the effects of fibrillar Aß and brain-derived tau oligomers on AD-related gene expression and to interrogate mechanisms involved in synaptic pruning. Taken together, these findings demonstrate that iMGLs can be used in high-throughput studies of microglial function, providing important new insight into human neurological disease. Overall design: Human cells were collected and analyzed for gene expression using RNA-seq.
iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases.
Specimen part, Subject
View SamplesIntercellular communication is critical for integrating complex signals in multicellular eukaryotes. Vascular endothelial cells and T lymphocytes closely interact during the recirculation and trans-endothelial migration of T cells. In addition to direct cell-cell contact, we show that T cell derived extracellular vesicles can interact with endothelial cells and modulate their cellular functions. Thrombospondin-1 and its receptor CD47 are expressed on exosomes/ectosomes derived from T cells, and these extracellular vesicles are internalized and modulate signaling in both T cells and endothelial cells. Extracellular vesicles released from cells expressing or lacking CD47 differentially regulate activation of T cells induced by engaging the T cell receptor. Similarly, T cell-derived extracellular vesicles modulate endothelial cell responses to vascular endothelial growth factor and tube formation in a CD47-dependent manner. Uptake of T cell derived extracellular vesicles by recipient endothelial cells globally alters gene expression in a CD47-dependent manner. CD47 also regulates the mRNA content of extracellular vesicles in a manner consistent with some of the resulting alterations in target endothelial cell gene expression. Therefore, the thrombospondin-1 receptor CD47 directly or indirectly regulates intercellular communication mediated by the transfer of extracellular vesicles between vascular cells.
CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells.
Specimen part, Cell line, Treatment
View SamplesWe performed expression profiling of 36 types of normal human tissues and identified 2,503 tissue-specific genes. We then systematically studied the expression of these genes in cancers by re-analyzing a large collection of published DNA microarray datasets. Our study shows that integration of each gene's breadth of expression (BOE) in normal tissues is important for biological interpretation of the expression profiles of cancers in terms of tumor differentiation, cell lineage and metastasis.
Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues.
No sample metadata fields
View SamplesNutritional status influences feeding behaviors, food preferences and taste sensations. For example, zinc-deficient rats have been reported to show reduced and cyclic food intake patterns with increased preferences for NaCl. Although some impairments of the central nervous and endocrine systems have been speculated to be involved in these phenomena, the effects of short-term zinc deficiency on the brain have not been well examined to date. In this study, we performed a comprehensive analysis of the gene expression patterns in the rat diencephalon, which is a portion of the brain that includes the hypothalamus and thalamus, after short-term zinc deficiency and also during zinc recovery. The rats showed reduced and cyclic food intake patterns with increased salt preferences after a 10-day dietary zinc deficiency. A comparative analysis of their diencephalons using cDNA microarrays revealed that approximately 1% of the genes expressed in the diencephalons showed significantly altered expression levels. On the other hand, a 6-day zinc supplementation following the deprivation allowed for the recovery to initial food intake behaviors and salt preferences. The expression levels of most of the genes that had been altered by exposure to zinc deficient conditions were also recovered. These results show that feeding behaviors, taste preferences and gene expression patterns in the diencephalon respond quickly to changing zinc levels. This suggests that the gene expression changes observed in the diencephalon and the accompanying functional changes may be related to the development of deviations in feeding behaviors and increased preferences for NaCl in zinc-deficient rats.
Dietary zinc status reversibly alters both the feeding behaviors of the rats and gene expression patterns in diencephalon.
Sex, Treatment
View Samples