The oxt6 mutant is an oxidative stress-tolerant Arabidopsis mutant that is deficient in a polyadenylation factor subunit. Expression analysis suggests that impaired poly(A) site choice is responsible for the stress-tolerant phenotype.
A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana.
No sample metadata fields
View SamplesIL-17 and TNF-alpha synergistically induce surface expression of IL-13Ra2 on primary lung fibroblasts, rendering them unresponsive to IL-13. Neutralizing antibodies to IL-13Ra2 restored IL-13-mediated signaling and transcriptome studies confirmed IL-13Ra2 is an IL-13 decoy receptor.
TNF-α/IL-17 synergy inhibits IL-13 bioactivity via IL-13Rα2 induction.
Specimen part, Cell line
View SamplesWe performed total RNA-Seq and compared expression levels of genes of whole blood cells isolated from patients after kidney transplantation with stable graft function, antibody mediated- and t cell mediated graft rejection. Overall design: Whole blood cells were isolated from 6 patients with stable graft function, 6 patients with histologically verified antibody mediated graft rejection episode and 4 patients with histologically verified T cell mediated graft rejection after kidney transplantation. Total RNA was extracted and cDNA libraries for total RNA sequencing were generated using “TruSeq® Stranded Total RNA Library” kit (Illumina, San Diego, CA, USA).
The regulation of interferon type I pathway-related genes RSAD2 and ETV7 specifically indicates antibody-mediated rejection after kidney transplantation.
Specimen part, Subject
View SamplesBone marrow (BM) stromal cells are important in the development and maintenance of cells of the immune system. Using single cell RNA sequencing, we here explore the functional and phenotypic heterogeneity of individual transcriptomes of 1,167 murine BM mesenchymal stromal cells. These cells exhibit a tremendous heterogeneity of gene expression, which precludes the identification of defined subpopulations. However, according to the expression of 108 genes involved in the communication of stromal cells with hematopoietic cells, we have identified 14 non-overlapping subpopulations, with distinct cytokine or chemokine gene expression signatures. With respect to the maintenance of subsets of immune memory cells by stromal cells, we identify distinct subpopulations expressing IL7, IL15 and Tnfsf13b. Together, this study provides a comprehensive dissection of the BM stromal heterogeneity at the single cell transcriptome level and provides a basis to understand their lifestyle and their role as organizers of niches for the long-term maintenance of immune cells. Overall design: For single cell library preparation, ex vivo FACS sorted VCAM-1+CD45-Ter119-CD31- BM cells were applied to the 10X Genomics platform using the Single Cell 3' Reagent Kit V2 (10x Genomics) following the manufacturer's instructions. Upon adapter ligation and index PCR, the quality of the obtained cDNA library was assessed by Qubit quantification, Bioanalyzer fragment analysis (HS DNA Kit, Agilent) and KAPA library quantification qPCR (Roche). The sequencing was performed on a NextSeq500 device (Illumina) using a High Output v2 Kit (150 cycles) with the recommended sequencing conditions (read1: 26nt, read2: 98nt, index1: 8 nt, index2: n.a.).
Single-cell transcriptomes of murine bone marrow stromal cells reveal niche-associated heterogeneity.
Specimen part, Subject
View SamplesWe performed total RNA-Seq of murine Th1 cells which were four times reactivated in vitro in the presence of irradiated APC'srepeatedly activated in vitro. Overall design: CD4+CD62Lhi (naive) cells were isolated from C57BL/6 mice, activated with aCD3 and aCD28 an cultured under Th1 polarizing conditions in the presence of irradiated APCs. Every sixth day cells were harvested, restimulated with aCD3 and aCD28 and cultured under Th1 polarizing conditions in the presence of irradiated APCs APCs. After four rounds of restimulation, total RNA was extracted and cDNA libraries for total RNA sequencing were generated using “TruSeq® Stranded Total RNA Library” kit (Illumina, San Diego, CA, USA).
MicroRNA-31 Reduces the Motility of Proinflammatory T Helper 1 Lymphocytes.
Specimen part, Subject
View Samples10 adult participants of dose group 3x10^6 pfu, and 10 participants of dose group 20x10^6 pfu. Reads were aligned to the human reference assembly (GRCh38.p7) using STAR software (v2.4.2a; option ''--quantMode GeneCounts''). Gene annotation was obtained from Ensembl (release 79, ensemble.org). VOOM+Limma analysis (R software, version 3.2.2) was used to assess differential gene expression at each post-vaccination day (d1, d3 and d7) against baseline (d0). Next, we intergreted gene expression data and antibody response using an sPLS algorithm, in order to down-select genes correlating with multivariate antibody responses at days 28, 54, 84,180. Overall design: 56 samples from D0, D1, D3 and D7 were analysed. Data from samples with low RIN (RIN <8, 17 samples), low RNA or library concentration (2 samples), missing samples (5 samples) were set to missing.
Systems Vaccinology Identifies an Early Innate Immune Signature as a Correlate of Antibody Responses to the Ebola Vaccine rVSV-ZEBOV.
Specimen part, Subject
View SamplesRecent studies have been successful at utilizing ectopic expression of transcription factors to generate induced cardiomyocytes (iCMs) from fibroblasts, albeit at a low frequency in vitro. This work investigates the influence of small molecules that have been previously reported to improve differentiation to cardiomyocytes as well as reprogramming to iPSCs in conjunction with ectopic expression of the transcription factors Hand2, Nkx2.5, Gata4, Mef2C, and Tbx5 on the conversion to functional iCMs. We utilized a reporter system in which the calcium indicator GCaMP is driven by the cardiac Troponin T promoter to quantify iCM yield. The TGF inhibitor, SB431542 (SB), was identified as a small molecule capable of increasing the conversion of both mouse embryonic fibroblasts and adult cardiac fibroblasts to iCMs up to ~5 fold. Further characterization revealed that inhibition of TGF by SB early in the reprogramming process led to the greatest increase in conversion of fibroblasts to iCMs in a dose-responsive manner. Global transcriptional analysis at Day 3 post-induction of the transcription factors revealed an increased expression of genes associated with the development of cardiac muscle in the presence of SB compared to the vehicle control. Incorporation of SB in the reprogramming process increases the efficiency of iCM generation, one of the major goals necessary to enable the use of iCMs for discovery-based applications and for the clinic.
Inhibition of TGFβ signaling increases direct conversion of fibroblasts to induced cardiomyocytes.
Specimen part, Treatment
View SamplesTransdifferentiation has been recently described as a novel method for converting human fibroblasts into induced cardiomyocyte-like cells. Such an approach can produce differentiated cells to study physiology or pathophysiology, examine drug interactions or toxicities, and engineer tissues. Here we describe the transdifferentiation of human dermal fibroblasts towards the cardiac cell lineage via the induced expression of transcription factors (TFs) GATA4, TBX5, MEF2C, MYOCD, NKX2-5, and delivery of microRNAs miR-1 and miR-133a. Cells undergoing transdifferentiation expressed ACTN2 and TNNT2 and partially organized their cytoskeleton in a cross-striated manner. The conversion process was associated with significant upregulation of a cohort of cardiac-specific genes, activation of pathways associated with muscle contraction and physiology, and downregulation of fibroblastic markers. We used a genetically encoded calcium indicator and readily detected active calcium transients although no spontaneous contractions were observed in transdifferentiated cells. Finally, we determined that inhibition of Janus kinase 1, inhibition of glycogen synthase kinase 3, or addition of NRG1 significantly enhanced the efficiency of transdifferentiation. Overall, we describe a method for achieving transdifferentiation of human dermal fibroblasts into induced cardiomyocyte-like cells via transcription factor overexpression, microRNA delivery, and molecular pathway manipulation.
Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage.
Specimen part, Treatment, Time
View SamplesModerate alcohol exposure during pregnancy can result in a heterogeneous range of neurobehavioural and cognitive effects, termed fetal alcohol spectrum disorders (FASD). We have developed a mouse model of FASD that involves moderate ethanol exposure throughout gestation achieved by voluntary maternal consumption. This model results in phenotypes relevant to FASD. Since ethanol is known to directly affect the expression of genes in the developing brain leading to abnormal cell death, changes to cell proliferation, migration, and differentiation, and potential changes to epigenetic patterning, we hypothesize that this leaves a long-term footprint on the adult brain. However, the long-term effects of prenatal ethanol exposure on brain gene expression, when behavioural phenotypes are apparent, are unclear.
Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice.
Sex, Specimen part, Treatment
View SamplesThe developing brain is particularly sensitive to ethanol during the brain growth spurt or synaptogenesis (third human trimester equivalent). This has been shown to lead to abnormal brain development and behavioural changes in the adult mouse that are relevant to those seen in humans with fetal alcohol spectrum disorders (FASD). We evaluated the long-term (postnatal day 60 young adult) gene expression changes that occur in the brain due to ethanol exposure during synaptogenesis.
Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice.
Treatment
View Samples