RNA expression analysis was performed to compare patterns to sensitivity to BCL2 inhibitors (ABT-263).
ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor.
No sample metadata fields
View SamplesSickle cell disease is characterized by hemolysis, vaso-occlusion and ischemia reperfusion injury. These events cause endothelial dysfunction and vasculopathies in multiple systems
Global gene expression profiling of endothelium exposed to heme reveals an organ-specific induction of cytoprotective enzymes in sickle cell disease.
Specimen part, Treatment
View SamplesRegulation of RNA levels is critical for the response to external stimuli and determined through the interplay between RNA production, processing and degradation. Despite the centrality of these processes, most global studies of RNA regulation do not distinguish their separate contributions and relatively little is known about how they are temporally integrated. Here, we combine metabolic labeling of RNA with advanced RNA quantification assays and computational modeling to estimate RNA transcription and degradation during the response of immune dendritic cells (DCs) to pathogens, a critical and tightly regulated step in innate immunity. We find that transcription regulation plays a major role in shaping most temporal changes in RNA levels, but that changes in degradation rate are important for shaping sharp ‘peaked’ responses. We find that transcription changes precede corresponding RNA changes by a small lag (15-30 min), which is shorter for induced than for repressed genes. Massively parallel sequencing of the entire RNA population – including non-polyadenylated transcripts – allows us to estimate RNA processing, and identify specific groups of transcripts, mostly cytokines and transcription factors, undergoing enhanced mRNA maturation. This suggests an additional role for splicing in regulating mRNA maturation. Our method provides a new quantitative approach to study key steps in the integrative process of RNA regulation. Overall design: Sequencing of 4sU-labeled RNA taken from a 7 samples time-series (one sample every 1 hour) during the response of DCs to LPS stimulation. 4-thiouridine was added 45 minutes prior to sample collection. Data presented here for six timepoints: 0, 1, 3-6 hrs. 2hr timepoint not included.
Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells.
No sample metadata fields
View SamplesImmortalized, amelanotic melanocytes isolted from skin of Balb/c express enzymatically-inactive tyrosinase due to a homozygous point mutation (TGT->TCT) in tyrosinase gene, resulting in a lack of melanin . To serve as a control cell line, pigmentation was restored in these cells by correcting the point mutation using an RNA-DNA oligonucleotide (kingly gift from Dr. Alexeev Y. Vitali).
Melanocyte-secreted fibromodulin promotes an angiogenic microenvironment.
Specimen part
View SamplesFour Kcng4-cre;stop-YFP mouse retinas from two mice were dissected, dissociated and FACS sorted, and single cell RNA-seq libraries were generated for 384 single cells using Smart-seq2. Aligned bam files are generated for 383 samples as one failed to align. Overall design: Four mouse retinas (labeled 1la, 1Ra, and 2la, 2Ra respective from the two mice) were used, and 96 single cells from each were processed using Smart-seq2. Total 384 cells Smart-seq2 analysis of P17 FACS sorted retinal cells from the Kcng4-cre;stop-YFP mice (Kcng4tm1.1(cre)Jrs mice [Duan et al., Cell 158, 793-807, 2015] crossed to the cre-dependent reporter Thy1-stop-YFP Line#1 [Buffelli et al., Nature 424, 430-434, 2003])
Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics.
Specimen part, Subject
View SamplesRNA-Seq is an effective method to study the transcriptome, but can be difficult to apply to scarce or degraded RNA from fixed clinical samples, rare cell populations, or cadavers. Recent studies have proposed several methods for RNA-Seq of low quality and/or low quantity samples, but their relative merits have not been systematically analyzed. Here, we compare five such methods using a comprehensive set of metrics, relevant to applications such as transcriptome annotation, transcript discovery, and gene expression. Using a single human RNA sample, we constructed and deeply sequenced 10 libraries with these methods and two control libraries. We find that the RNase H method performed best for low quality RNA, and can even effectively replace oligo (dT) based methods for standard RNA-Seq. SMART and NuGEN had distinct strengths for low quantity RNA. Our analysis allows biologists to select the most suitable methods and provides a benchmark for future method development. Overall design: Examination of 9 different RNA-Seq libraries starting from total RNA from 5 distinct methods; also 3 control RNA-Seq libraries
Comparative analysis of RNA sequencing methods for degraded or low-input samples.
Specimen part, Cell line, Subject
View Samples15,000 GFP+ cells were collected from two replicates of the Htr3a GFP line into RNAlater (ThermoFisher, AM7024). RNA was purified and bulk RNA-seq was performed using the Ovation RNA-seq system V2 (Nugen, 7102-32) Overall design: Bulk RNA-seq analysis of Type 5 retinal bipolar cells (2 biological replicates)
Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics.
Specimen part, Subject
View SamplesComparative analysis of RUNX1 and RUNX2 responsiveness in the presence or absence of E2
RUNX1 prevents oestrogen-mediated AXIN1 suppression and β-catenin activation in ER-positive breast cancer.
Cell line, Treatment
View SamplesAging is a major risk factor for both genetic and sporadic neurodegenerative disorders. However, it is unclear how aging interacts with genetic predispositions to promote neurodegeneration. Here we investigate how partial loss-of-function of TBK1, a major genetic cause for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comorbidity, leads to age-dependent neurodegeneration. We show that TBK1 is an endogenous inhibitor of RIPK1 and the embryonic lethality of Tbk1-/- mice is dependent on RIPK1 kinase activity. In aging human brains, another endogenous RIPK1 inhibitor, TAK1, exhibits a marked decrease in expression. We show that in Tbk1+/- mice, the reduced myeloid TAK1 expression promotes all the key hallmarks of ALS/FTD, including neuroinflammation, TDP-43 aggregation, axonal degeneration, neuronal loss and behavior deficits, which are blocked upon inhibition of RIPK1. Thus, aging facilitates RIPK1 activation by reducing TAK1 expression, which cooperates with genetic risk factors to promote the onset of ALS/FTD. Overall design: mRNA profiles of primary microglia derived from 2-day old wild type (WT), Tbk1+/-, Tbk1+/-;Ripk1D138N/D138N, Tak1?M/+, Tbk1+/-;Tak1?M/+ and Tbk1+/-;Tak1?M/+;RIpk1D138N/+ mice were generated by bulk RNA sequencing, in triplicate.
TBK1 Suppresses RIPK1-Driven Apoptosis and Inflammation during Development and in Aging.
No sample metadata fields
View SamplesEffect of RUNX1 depletion in the presence or absence of Estradiol
RUNX1 prevents oestrogen-mediated AXIN1 suppression and β-catenin activation in ER-positive breast cancer.
Cell line, Treatment
View Samples