Transcriptome analysis on ING5-knockdown brain tumor stem cell lines
ING5 activity in self-renewal of glioblastoma stem cells via calcium and follicle stimulating hormone pathways.
Specimen part, Cell line
View SamplesNascent transcription profiles are shown for scaled megadomains and 100kb flanking regions before BRD4-NUT induction (0h) and at different time points (2h, 3h, 7h) following induction in 293T cells. Increase of the transcription from 0h to 7h after induction. Average level of transcriptional activity is reduced within the megadomains and their flanking regions following JQ1 treatment of TC-797 cells. Profile of nascent RNA-seq is shown for cells without JQ1 treatment, and for cells 1hr, 2.5hr and 4hr following JQ1 treatment. Overall design: Recovery and analysis of nascent RNA
The oncogenic BRD4-NUT chromatin regulator drives aberrant transcription within large topological domains.
No sample metadata fields
View SamplesWe sequenced the mRNAs of embryonic stem cells (ESCs) cultured in different conditions. The two lines M (male) and F (female) used in this study were derived from E4 blastocysts of the same cross between a C57BL/6J (Mus musculus domesticus) and CAST/EiJ (Mus castaneus) male. mESCs were cultured in 2i and LIF as the ground state condition or in serum and LIF as the conventional condition. Epistem cell lines were also generated from the two lines by culturing them with Activin A and FGF2. In order to study more advanced development, we differentiated the two mESC lines through embryonic body formation to postmitotic motor neurons using retinoic acid and the smoothened agonist SAG. This differentiation process also results in the derivation of several types of interneurons. We picked single cells from all different conditions and generated sequencing libraries using the Smart-seq2 and Tn5 protocol. For simplicity, we designate the different condition as ES2i, ES, Epi and Neuron from hereon. We also obtained preimplantation inner cell mass and epiblast cells from E3.5 ICM (inner cell mass) and E4.5 blastocysts of the crossbred mice (male CAST/EiJ × female C57BL/6J) as well as postimplantation epiblast cells from E5.5 embryos of C57BL/6J mice Overall design: Examination of gene expression profile in individual male and female embryonic stem cell lines along developmental progression
Single-cell analyses of X Chromosome inactivation dynamics and pluripotency during differentiation.
Sex, Specimen part, Cell line, Subject
View SamplesThe generation of specific types of neurons from stem cells offers important opportunities in regenerative medicine. However, future applications and proper verification of cell identities will require stringent ways to generate homogenous neuronal cultures. Here we show that under permissive culturing conditions individual transcription factors can induce a desired neuronal lineage from virtually all expressing cells by a mechanism resembling developmental binary cell fate switching. Such efficient selection of cell fate resulted in remarkable cellular enrichment that enabled global gene expression validation of generated neurons and identification of novel features in the studied cell lineages. Several sources of stem cells have a limited competence to differentiate into e.g. dopamine neurons. However, we show that the combination of factors that normally promote either regional or dedicated neuronal specification can overcome limitations in cellular competence and promote efficient reprogramming also in more remote neural contexts, including human neural progenitor cells.
Transcription factor-induced lineage selection of stem-cell-derived neural progenitor cells.
Specimen part, Cell line
View SamplesCK1-alpha-LS was knocked down in human coronary artery smooth muscle cells. Gene level and exon level changes in expression were assessed.
Protein kinase CK1alphaLS promotes vascular cell proliferation and intimal hyperplasia.
Specimen part
View SamplesBasal-like breast cancer (BLBC) cells share phenotypic similarities with cancer stem cells (CSCs) but the underlying molecular basis for this connection remains elusive. We hypothesized that BLBC cells are able to establish a niche permissive to the maintenance of CSCs and found that tumor cell-derived periostin (POSTN), a component of the extracellular matrix, as well as a corresponding cognate receptor, integrin v3, are highly expressed in a subset of BLBC cell lines as well as in cancer stem cell-enriched populations. Furthermore, we demonstrated that an intact periostin-integrin 3 signaling axis is required for the maintenance of breast CSCs. POSTN activates the ERK signaling pathway and regulates NF-B-mediated transcription of key cytokines, namely IL6 and IL8, which in turn mediate downstream activation of STAT3. In summary, these findings suggest that BLBC cells have an innate ability to establish a microenvironmental niche supportive of CSCs.
Tumor Cell-Derived Periostin Regulates Cytokines That Maintain Breast Cancer Stem Cells.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes.
Sex, Specimen part
View SamplesWe examined molecular responses using transcriptome profiling in isolated left ventricular murine cardiomyocytes to 90 cGy, 1 GeV proton (1H) and 15 cGy, 1 GeV/nucleon (n) iron (56Fe) particles 1, 3, 7, 14 and 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the radiation (IR) response, and time after exposure with 56Fe-IR showing the greatest level of gene modulation. 1H-IR exposures showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Individual transcription factors were inferred to be active at 1, 3, 7, 14 and 28 days after exposure. Validation of the signal transduction network by protein analysis showed that particle IR clearly regulates a long lived signaling mechanism for p38 MAPK signaling and NFATc4 activation. Electrophoresis mobility shift assays supported the role of additional key transcription factors GATA-4, STAT-3 and NF-B as regulators of the response at specific time points. These data suggest that the molecular response to 56Fe-IR is unique and shows long-lasting gene expression in cardiomyocytes, up to 28 days after exposure. Additionally, proteins involved in signal transduction and transcriptional activation via DNA binding play a role in the response to high charge (Z) and energy (E) particles (HZE). Our study may have implications for NASAs efforts to develop heart disease risk estimates for astronauts safety via identification of specific HZE-IR molecular markers and for patients receiving conventional and particle radiotherapy.
Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes.
Sex, Specimen part
View SamplesIn this study, we took advantage of a previously established breast cancer progression cell line model system, which consists of a parental MCF10A (MI) spontaneously immortalized mammary epithelial cell line and two of its derivatives: 1) MCF10ATk.cl2 (MII), a MCF10A H-Ras transformed cell line and 3) MCF10CA1h (MIII), derived from a xenograft of the MII cells in nude mice that progressed to carcinoma (1, 2). These cell lines were previously reported to exhibit distinct tumorigenic properties when re-implanted in nude mice; MI is non-tumorigenic, MII forms benign hyperplastic lesions and MIII forms low-grade, well differentiated carcinomas (2, 3). The advantage of this system is that these cell lines were derived from a common genetic background (MCF10A) and accumulated distinct genetic/epigenetic alterations in vivo enabling them to acquire a range of non-tumorigenic to carcinogenic properties. Our initial studies showed that MIII cells, but not MI or MII, exhibit an EMT phenotype, promoter DNA hypermethylation of epithelial genes and highly invasive properties in vitro.
Smad signaling is required to maintain epigenetic silencing during breast cancer progression.
Cell line
View SamplesCharacterization of Peroxisome Proliferator-Activated Receptor alpha (PPAR(alpha)) - Independent Effects of PPAR(alpha) Activators in the Rodent Liver: Di-(2-ethylhexyl) phthalate Activates the Constitutive Activated Receptor
Characterization of peroxisome proliferator-activated receptor alpha--independent effects of PPARalpha activators in the rodent liver: di-(2-ethylhexyl) phthalate also activates the constitutive-activated receptor.
Sex, Age, Treatment
View Samples