Communication between various ovarian cell types is a prerequisite for folliculogenesis and ovulation. In antral follicles granulosa cells divide into two distinct populations of mural (MGC) and cumulus granulosa cells (CGC), enveloping the antrum and surrounding the oocyte, respectively. IVF offers a good opportunity for analysing their functional properties since granulosa cells can be retrieved during the puncturing procedure of stimulated follicles. The aim of this study was to compare the transcriptomes of MGC and CGC in stimulated antral follicles obtained from 19 women undergoing IVF-ICSI procedure. MGC were obtained from follicular fluid and CGC were acquired after oocyte denudation for micromanipulation. Gene expression analysis was conducted using the genome-wide Affymetrix transcriptome array. The expression profile of the two granulosa cell populations varied significantly. Out of 28 869 analysed transcripts 4 480 were differentially expressed (q-value < 10-4) and 489 showed 2-fold difference in the expression level with 222 genes up-regulated in MGC and 267 in CGC. The transcriptome of MGC showed higher expression of genes involved in immune response, hematological system function and organismal injury, while CGC had genes involved in protein degradation and nervous system function up-regulated. Cell-to-cell signalling and interaction pathways were noted in both cell populations. Furthermore, numerous novel transcripts that have not been previously described in follicular physiology were identified. In conclusion, our results provide a solid basis for future studies in follicular biology that will help to identify molecular markers for oocyte and embryo viability in IVF.
The differential transcriptome and ontology profiles of floating and cumulus granulosa cells in stimulated human antral follicles.
Specimen part
View SamplesCell-type specific RNA-seq is a powerful approach for unravelling molecular processes of endometrial receptivity, and to detect novel sensitive biomarkers of receptivity. Overall design: 16 paired endometrial tissue samples from pre-receptive (defined as LH2) and receptive phase endometria (defined as LH8) from Estonia (defined as E) and Spain (defined as S) were collected. CD9-positive epithelial cells (defined as epithelium) and CD13-positive stromal cells (defined as stroma) were isolated with fluorescent activated cell sorting (FACS) and full transcriptome analysis was performed by RNA-seq.
Meta-signature of human endometrial receptivity: a meta-analysis and validation study of transcriptomic biomarkers.
Specimen part, Subject
View SamplesMus musculus transcriptome during infection with Candida albicans strains SC5314 and 101
Persistence of <i>Candida albicans</i> in the Oral Mucosa Induces a Curbed Inflammatory Host Response That Is Independent of Immunosuppression.
Sex, Specimen part, Cell line
View SamplesPrimordial germ cells (PGCs), the embryonic precursors of eggs and sperm, are a unique model for identifying and studying regulatory mechanisms in singly migrating cells. From their time of specification to eventual colonization of the gonad, mouse PGCs traverse through and interact with many different cell types, including epithelial cells and mesenchymal tissues. Work in drosophila and zebrafish have identified many genes and signaling pathways involved in PGC migration, but little is known about this process in mammals.
Discrete somatic niches coordinate proliferation and migration of primordial germ cells via Wnt signaling.
Specimen part
View SamplesThis study determined the genes that are differentially expressed when regulatory T cells (Tregs) were isolated from the lamina propria of the small and large intestine from mice with impaired IL-2R signaling (designated Y3) or impaired IL-2R signaling and lack of CD103 expression (designated Y3/CD103-/-) when compared to Tregs from WT mice. 204 unique annotated mRNAs were differentially expressed by 1.5 fold between these 3 groups (Fig. 6B). Very few mRNAs were uniquely up or down regulated in relationship to impaired IL-2R signaling or the combination of impaired IL-2R signaling and lack of CD103 expression. Thus, lack of CD103 does not obviously regulated signaling in Tregs in the gut mucosa and most differentially expressed genes were due to impaired IL_2R signaling. Gene enrichment analysis of these differentially expressed genes identified 4 major enrichment groups (EG) are: EG1, Cytokine-cytokine receptor interaction and the JAK-STAT signaling pathway; EG2, regulation of lymphocyte activation and proliferation; EG3, regulation of cell death and the caspase pathway in apoptosis; and EG4, transcription.
IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa.
Specimen part
View SamplesBrain structure and function experience dramatic changes from embryonic to postnatal development. However, gene expression information during early brain development is limited. We have generated >27 million reads to identify mRNAs from the mouse cortex for >16,000 genes at either embryonic day 18 (E18) or postnatal day 7 (P7), a period of significant synaptogenesis for neural circuit formation. In addition, we devised strategies to detect alternative splice forms and previously unannotated transcriptionally active regions (TARs).
Transcriptome of embryonic and neonatal mouse cortex by high-throughput RNA sequencing.
No sample metadata fields
View SamplesAbiotic stress is a major factor for crop productivity, a problem likely to be exacerbated by climate change. Improving the tolerance to environmental stress is one of the most important goals of crop breeding programmes. While the early responses to abiotic stress in plants are well studied, plant adaptation to enduring or recurring stress conditions has received little attention. This project investigates the molecular mechanism of the maintenance of acquired thermotolerance as a model case of stress memory in Arabidopsis. Arabidopsis seedlings acquire thermotolerance through a heat treatment at sublethal temperatures. To investigate the underlying mechanisms, we are investigating changes in the transcriptome at two timepoints after a heat acclimation treatment using Arabidopsis thaliana seedlings.
Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors.
Treatment
View SamplesIL-2R signaling is essential for regulatory T cell (Treg) function. However, the precise contribution for IL-2 during Treg thymic development, peripheral homeostasis, and lineage stability remains unclear. Here we show that IL-2R signaling is essential for thymic Tregs at an early step for expansion/survival and a later step for functional maturation. Using selective deletion of CD25 in peripheral Tregs, we also find that IL-2R signaling was absolutely essential for their persistence whereas Treg lineage stability was IL-2-independent. CD25 knockout peripheral Tregs showed increased apoptosis, oxidative stress, signs of mitochondrial dysfunction, and reduced transcription of key enzymes of lipid and cholesterol biosynthetic pathways. A divergent IL-2 transcriptional signature was noted for thymic Tregs versus peripheral Tregs. These data indicate that IL-2R signaling in the thymus and the periphery leads to distinctive effects on Treg function, where peripheral Treg survival depends on a non-conventional mechanism of metabolic regulation. Overall design: To evaluate IL-2Ra-dependent transcriptional activity in thymic Tregs, CD25 KO Tregs were isolated from thymuses of Treg-targeted CD25 conditional KO animals, as well as CD25 WT controls. Groups of 5 biological replicates (mice) were compared. To evaluate IL-2Ra-dependent transcriptional activity in splenic Tregs, CD25 KO Tregs were isolated from tamoxifen-inducible, Treg-targeted CD25 conditional KO mice as well as CD25 WT reporter controls following tamoxifen induction. Groups of 4 biological replicates (mice) were compared. Libraries were prepared using KAPA's RNA Hyperprep protocol and sequenced on a 75 bp paired-end run using the Illumina NextSeq 500 High Output Kit (150-cycle; 400 M flow cell). Reads from RNA-seq were mapped to the Mus musculus genome GRCm38 using STAR (ver.2.5.0) aligner. Raw counts were generated based on Ensembl genes (GENCODE M13) with featureCounts (ver.1.5.0). Differentially expressed genes between CD25 KO and WT Tregs were identified using DESeq2, and determined by a threshold of false discovery rate (FDR) <0.01.
Essential and non-overlapping IL-2Rα-dependent processes for thymic development and peripheral homeostasis of regulatory T cells.
Specimen part, Cell line, Subject
View SamplesMounting evidence points to a link between a cancer possessing stem-like properties and a worse prognosis. To understand the biology, a common approach is to integrate network biology with signal processing mechanics. That said, even with the right tools, predicting the risk for a highly susceptible target using only a handful of gene signatures remains very difficult. By compiling the expression profiles of a panel of tumor stem-like cells (TSLCs) originating in different tissues, comparing these to their parental tumor cells (PTCs) and the human embryonic stem cells (hESCs), and integrating network analysis with signaling mechanics, we propose that network topologically-weighted signaling processing measurements under tissue-specific conditions can provide scalable and predicable target identification.
Network biology of tumor stem-like cells identified a regulatory role of CBX5 in lung cancer.
Specimen part
View SamplesPostnatal handling in rodents leads to decreased anxiety-like behavior in adulthood. We used microarrays to look at gene expression differences in the CA1 region of the hippocampus in female mice subjected to postnatal handling compared to controls.
Variation in the large-scale organization of gene expression levels in the hippocampus relates to stable epigenetic variability in behavior.
No sample metadata fields
View Samples