Actinic keratosis is a common skin disease that may progress to invasive squamous cell carcinoma. Ingenol mebutate has demonstrated efficacy in field treatment of actinic keratosis. However, molecular mechanisms on ingenol mebutate response are not yet fully understood.
Identification of differentially expressed genes in actinic keratosis samples treated with ingenol mebutate gel.
Specimen part, Disease, Disease stage, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptome and cytogenetic profiling analysis of matched in situ/invasive cutaneous squamous cell carcinomas from immunocompetent patients.
Sex, Age, Specimen part, Disease stage, Subject
View SamplesAlthough most cutaneous squamous cell carcinomas (cSCC) develop from actinic keratoses (AK), the key events for this evolution remain unclear. We have combined the results of different genomic and expression array platforms on matched samples of sun-exposed skin, AK and cSCC from ten immunocompetent patients, with the objective of better understanding the mechanisms involved in this progression. Gene expression analysis and copy number alterations were assessed using GeneChip Human Gene 2.0 ST Array (Affymetrix) and CytoScan HD Cytogenetics Solution (Affymetrix) platforms, respectively. Integration of genome and transcriptome results was evaluated using the DR-Integrator tool. Additional studies (qPCR, immunohistochemistry and Western blot) were performed for selected genes. Twenty-two genes showed a progressive expression spectrum from clinically normal sun-exposed skin samples to cSCC. FOSL1 and BNC1 encode transcription factors whose expression was increased in cSCC in the expression array and the qPCR. By immunohistochemistry, FOSL1 showed an intense staining at the invasive front of cSCC samples and BNC1 expression varied from a nuclear location (sun-exposed skin) to a cytoplasmic location (cSCC). Western blot analyses confirmed the enhancement of FOSL1 and BNC1 expression. Additionally, the smallest overlapping regions of genomic imbalance (SORIs) involving at least 3 of the samples of each group (sun-exposed skin, AK or cSCC) were selected. One of the SORIs was a deletion in the p24.1 band of chromosome 3, shared by 7 of the cSCC. A strong correlation in the integration analysis was found for NEK10, a gene contained in the previously mentioned SORI. Loss of NEK10 expression in cSCC was confirmed by immunohistochemistry and western blot analyses. In conclusion, our findings suggest that FOSL1 may play a role in promoting the cSCC invasion ability. We have also identified two additional genes, NEK10 and BNC1, which could also act as tumor drivers.
Transcriptome and cytogenetic profiling analysis of matched in situ/invasive cutaneous squamous cell carcinomas from immunocompetent patients.
Sex, Age, Specimen part, Disease stage, Subject
View SamplesCockayne syndrome (CS) is an autossomal human disorder characterized by premature aging along with other symptoms. At the molecular level, CS is characterized by a deficiency in the Transcription-couple DNA repair pathway caused by a mutation mainly in ERCC6 gene and the absence of its functional protein. It has been shown that the presence of DNA damage and the lack of some functional proteins related to DNA repair constitute a barrier for somatic cell reprogramming. Recently, it was demonstrated that one protein involved in Genome Global Repair controls the expression of an important pluripotent gene, highligting its importance for cellular reprogramming.
Evidence for premature aging due to oxidative stress in iPSCs from Cockayne syndrome.
Specimen part, Disease, Cell line
View SamplesCutaneous squamous cell carcinoma (cSCC) is the second most common malignancy in humans and approximately 5% metastasize, usually to regional lymph nodes. Epigenetic regulation of gene expression may allow tumoral cells to acquire new functions in order to escape from the primary tumor. The aim of this study was to investigate the expression and function of proteins of the Polycomb family of epigenetic regulators in the metastatic process of cSCC. A higher expression of RING1B and EZH2 was detected by immunohistochemistry in a series of primary cSCC tumors that metastasized (MSCC) when compared to non metastasizing cSCC (non MSCC). Stable downregulation of RING1B and EZH2 in cSCC cells results in enhanced expression of inflammatory cytokines and activation of the NFB signaling pathway. Accordingly, non MSCC display higher levels of membranous pS176 IKK and their stroma is enriched in neutrophils and eosinophils when compared to MSCC. In vitro, hematopoietic cells exhibit a substantial migratory response to supernatants from Polycomb depleted cSCC cells. Altogether these data indicate that RING1B and EZH2 repress the innate inflammatory cSCC function and impair tumor immunosurveillance and suggest that patients with high risk cSCC could benefit from clinical therapies addressed to harness the immune response.
The Polycomb proteins RING1B and EZH2 repress the tumoral pro-inflammatory function in metastasizing primary cutaneous squamous cell carcinoma.
Specimen part, Cell line
View SamplesTo explore the mechanisms responsible for spatial and temporal regulation of the growth plate, we microdissected postnatal rat growth plates into their constituent zones and then used microarray analysis to characterize the changes in gene expression that occur as chondrocytes undergo spatially-associated differentiation and temporally-associated senescence.
Spatial and temporal regulation of gene expression in the mammalian growth plate.
Age
View SamplesThe simultaneous genotyping of tens of thousands of SNP using SNP microarrays is a very important tool that is revolutionizing genetics and molecular biology. In this work, we present a new application of this technique by using it to assess chromatin immunoprecipitation (CHIP) as a means to assess the multiple genomic locations bound by a protein complex recognized by an antibody. We illustrate the use of this technique with an analysis of the change in histone H4 acetylation, a marker of open chromatin and transcriptionally active genomic regions, which occur during the differentiation of human myoblasts into myotubes. Our results are validated by the observation of a significant correlation between the histone modifications detected and the expression of the nearby genes, as measured by DNA microarrays.
ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation.
No sample metadata fields
View SamplesGene expression was determined for both myotubes and myoblasts using Affymetrix HG-U133 A/B arrays.
ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation.
No sample metadata fields
View SamplesOur laboratory wanted to define the transcription profile of aged skeletal muscle. For this reason, we performed a triplicate microarray study on young (3 weeks) and aged (24 months) gatrocnemius muscle from wild-type C57B16 Mice
Transcriptional profiling of skeletal muscle reveals factors that are necessary to maintain satellite cell integrity during ageing.
Sex
View SamplesIn order to characterize mRNA expression in the growth plate, we microdissected postnatal rat growth plates into their constituent zones and used microarray analysis to assess the abundences of individual transcripts. Expression patterns of PTHrP and Ihh-related genes were confirmed using real-time PCR. Using a gli1-lacZ mouse, Gli1 expression, presumably representing Ihh signaling, was visualized during pre- and postnatal development.
Organization of the Indian hedgehog--parathyroid hormone-related protein system in the postnatal growth plate.
Age
View Samples