This study explores the impact of lifestyle and environment on gene expression through whole transcriptome profiling of peripheral blood samples in Fijian population (native Melanesians and Indians) living in the rural and urban areas.
Using blood informative transcripts in geographical genomics: impact of lifestyle on gene expression in fijians.
Sex, Age, Specimen part, Subject
View SamplesBackground: Personalized medicine is predicated on the notion that individual biochemical and genomic profiles are relatively constant in times of good health and to some extent predictive of disease or therapeutic response. We report a pilot study quantifying gene expression and methylation profile consistency over time, addressing the reasons for individual uniqueness, and its relation to N=1 phenotypes. Methods: Whole blood samples from 4 African American women, 4 Caucasian women, and 4 Caucasian men drawn from the Atlanta Center for Health Discovery and Well Being study at three successive 6-month intervals were profiled by RNASeq, miRNASeq, and Illumina Methyl-450 arrays. Standard regression approaches were used to evaluate the proportion of variance for each type of omic measure that is among individuals, and to quantify correlations among measures and with clinical attributes related to wellness. Results: Longitudinal omic profiles are in general highly consistent over time, with an average of 67% of the variance in transcript abundance, 42% of CpG methylation level (but 88% for the most differentiated CpG per gene), and 50% of miRNA abundance among individuals, which are all comparable to 74% of the variance among individuals for 74 clinical traits. One third of the variance can be attributed to differential blood cell type abundance, which is also fairly stable over time, and a lesser amount to eQTL effects, whereas seven conserved axes of covariance that capture diverse aspects of immune function explain over half of the variance. These axes also explain a considerable proportion of individually extreme transcript abundance, namely approximately 100 genes that are significantly up- or down-regulated in each person and are in some cases enriched for relevant gene activities that plausibly associate with clinical attributes. A similar fraction of genes have individually divergent methylation levels, but these do not overlap with the transcripts, and fewer than 20% of genes have significantly correlated methylation and gene expression. Conclusions: People express an “omic personality” consisting of peripheral blood transcriptional and epigenetic profiles that are constant over the course of a year and reflect various types of immune activity. Baseline genomic profiles can provide a window into the molecular basis of traits that might be useful for explaining medical conditions or guiding personalized health decisions. Overall design: Whole blood samples from 12 subjects drawn from the Atlanta Center for Health Discovery and Well Being study at three successive 6-month intervals were profiled by RNASeq, miRNASeq, and Illumina Methyl-450 arrays.
Omic personality: implications of stable transcript and methylation profiles for personalized medicine.
No sample metadata fields
View SamplesWe report on explant osteoblast cultures from human patients, demonstrating that there are at least three sub-types of non-syndromic craniosynostosis defined by similarity of gene expression profiles. Overall design: Osteoblast growth in culture, 23 craniosynostosis skull samples (7 metopic; 8 coronal; 3 lambdoid; 5 sagittal) and 8 normal (4 cranial bones and 4 long bones)
Characterization of distinct classes of differential gene expression in osteoblast cultures from non-syndromic craniosynostosis bone.
No sample metadata fields
View SamplesBovine leukemia virus (BLV) Tax is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G) or reduced (TaxS240P) transactivation effects on BLV replication and propagation. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach.
Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis.
Cell line
View SamplesHuman T cell leukemia virus type 1 (HTLV-1) Tax is potent activator of viral and cellular gene expression that interacts with a number of cellular proteins. In this study, a large-scale host cell signaling events related to cellular proliferation were used to identify genes involved in Tax-mediated cell signaling events related to cellular proliferation and apoptosis.
Visualizing spatiotemporal dynamics of apoptosis after G1 arrest by human T cell leukemia virus type 1 Tax and insights into gene expression changes using microarray-based gene expression analysis.
Cell line
View SamplesCommunity-acquired pneumonia is a widespread disease with significant morbidity and mortality. Alveolar macrophages are tissue-resident lung cells that play a crucial role in innate immunity against bacteria causing pneumonia. We hypothesized that alveolar macrophages display adaptive characteristics after resolution of bacterial pneumonia. We studied mice one to six months after self-limiting lung infection due to Streptococcus pneumoniae, the most common cause of bacterial pneumonia. Among the myeloid cells recovered from the lung, only alveolar macrophages showed long-term modifications of their surface marker phenotype. The remodeling of alveolar macrophages was: (i) long-lasting (still observed 6 months post infection), (ii) regionally localized (only observed in the affected lobe after lobar pneumonia), and (iii) associated with a macrophage-dependent enhanced lung protection to another pneumococcal serotype. Metabolomic and transcriptomic profiling revealed that alveolar macrophages of mice which recovered from pneumonia had new baseline activities and altered responses to infection. Thus, the enhanced lung protection after mild and self-limiting respiratory infection includes a profound remodeling of alveolar macrophages that is long-lasting, compartmentalized, and manifest across surface receptors, metabolites, and both resting and stimulated transcriptomes.
Pneumonia recovery reprograms the alveolar macrophage pool.
Specimen part, Treatment
View SamplesMuscle biopsies from biceps and deltoid were taken from 5 patients with FSHD, 5 asymptomatic carriers and 5 normal controls. The genome-wide expression patterns were compared using Affymetrix U133 Plus 2.0 chips.
Transcriptional regulation differs in affected facioscapulohumeral muscular dystrophy patients compared to asymptomatic related carriers.
Sex, Age, Specimen part, Disease
View SamplesBisphenol A (BPA), an endocrine-disrupting chemical (EDC), is a well-known, ubiquitous estrogenic chemical. To investigate the effects of fetal exposure to low-dose BPA on the development of the prostate, we first examined the alterations of in situ sex steroid hormonal environment in the mouse urogenital sinus (UGS).
Endocrine disrupter bisphenol A increases in situ estrogen production in the mouse urogenital sinus.
Specimen part
View SamplesPlants possess a cold acclimation system to acquire freezing tolerance through pre-exposure to non-freezing low temperatures. The transcriptional cascade of C-repeat binding factors (CBFs)/dehydration response element-binding factors (DREBs) is considered a major transcriptional regulatory pathway during cold acclimation. However, little is known regarding the functional significance of mRNA stability regulation in the response of gene expression to cold stress. The actual level of individual mRNAs is determined by a balance between mRNA synthesis and degradation. Therefore, it is important to assess the regulatory steps to increase our understanding of gene regulation. Here, we analyzed temporal changes in mRNA amounts and half-lives in response to cold stress in Arabidopsis cell cultures based on genome-wide analysis. In this mRNA decay array method, mRNA half-life measurements and microarray analyses were combined. In addition, temporal changes in the integrated value of transcription rates were estimated from the above two parameters using a mathematical approach. Our results showed that several cold-responsive genes, including Cold-regulated 15a, were relatively destabilized, whereas the mRNA amounts were increased during cold treatment by accelerating the transcription rate to overcome the destabilization. Considering the kinetics of mRNA synthesis and degradation, this apparently contradictory result supports that mRNA destabilization is advantageous for the swift increase in CBF-responsive genes in response to cold stress.
Co-ordinated Regulations of mRNA Synthesis and Decay during Cold Acclimation in Arabidopsis Cells.
Cell line
View SamplesPluripotency is the differentiation capacity of particular cells exhibited in the early embryo in vivo and embryonic stem (ES) cells have been shown to originate from the inner cell mass (ICM) of an E3.5 blastocyst. Although the potential for ES cells to differentiate into the three germ layers is equated to ICM cells, they differ in the ability to maintain the capacity for self-renewal. Despite several studies on the maintenance of ES cells in the ground state of pluripotency, the precise mechanism of conversion from the ICM to the ES cell remains unclear. Here , we have examined the cell characteristics and expression profile within the intermediate stages of ES cell derivation from the ICM. Gene clustering and ontology (GO) analyses showed a significant change in the expression of epigenetic modifiers and DNA methylation-related genes in the intermediate stages. We have proposed that an epithelial-to-mesenchymal transition (EMT) blockage is required during derivation of mouse ES cells from E3.5 blastocysts. This study suggests a novel mechanistic insight into ES cell derivation and provides a time-course transcriptome profiling resource for the dissection of gene regulatory networks that underlie the transition from ICM to ES cells.
Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation.
No sample metadata fields
View Samples