Coronary artery disease (CAD) is the most common cardiovascular disease and the leading cause of death worldwide. To date, the 9p21.3 locus is the most robust and frequently replicated risk locus of CAD among >90 CAD risk loci identified by GWAS. More than 50 CAD-associated genomic variants were identified at the 9p21.3 CAD locus and many of them are located within a long non-coding gene ANRIL, which was initially referred to as Antisense Non-coding RNA in INK4 Locus. The causal role of ANRIL in CAD and the underlying molecular mechanism are unknown.
Long noncoding RNA <i>ANRIL</i> regulates endothelial cell activities associated with coronary artery disease by up-regulating <i>CLIP1</i>, <i>EZR</i>, and <i>LYVE1</i> genes.
Cell line, Treatment
View SamplesMyogenic differentiation relies on Pax7 function. We used embryonic stem cells lacking functional Pax7 to follow its role in derivation of skeletal myoblasts.
Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene.
No sample metadata fields
View SamplesMyogenic differentiation relies on Pax7 function. We used mouse embryonic fibroblasts lacking functional Pax7 to follow its role in terminally differentiated cells.
Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7.
Specimen part
View SamplesThe transcriptional coactivator ANGUSTIFOLIA 3 (AN3) stimulates cell proliferation during Arabidopsis leaf development, but the molecular mechanism is largely unknown. We show here that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR 2 (CRF2), CONSTANS-LIKE 5 (COL5), HECATE 1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR 4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED (SYD). Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoter of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.
ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development.
Specimen part, Time
View SamplesChronic tendon injuries, also known as tendinopathy, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure and yet little is known about the molecular mechanism leading to tendinopathy. We have used histological evaluation and molecular profiling to determine the gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Diseased tendons have altered extracellular matrix, fiber disorientation, increased cellular content and vasculature and the absence of inflammatory cells. Global gene expression profiling identified 1783 transcripts with significant different expression patterns in the diseased tendons. Global pathway analysis further suggests altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. We have identified pathways and genes regulated in tendinopathy samples that will help contribute to the understanding of the disease towards the development of novel therapeutics.
Regulation of gene expression in human tendinopathy.
Sex, Age, Specimen part, Disease, Disease stage, Subject
View SamplesPrimitive erythropoiesis in the mouse yolk sac is followed by definitive erythropoiesis resulting in adult erythrocytes. In comparison to definitive erythropoiesis little is known about the genes that control the embryonic erythroid program. The purpose of this study was to generate a profile of mouse embryonic yolk sac erythroid cells and identify novel regulatory genes differentially expressed in erythroid compared to non-erythroid (epithelial cells).
Identification of erythroid-enriched gene expression in the mouse embryonic yolk sac using microdissected cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.
Sex, Specimen part
View SamplesIn this study, we used the Affymetrix HG-U133A 2.0 GeneChip for deriving a multigenic classifier capable of predicting HCV+cirrhosis with vs without concomitant HCC.
Identifying genes for establishing a multigenic test for hepatocellular carcinoma surveillance in hepatitis C virus-positive cirrhotic patients.
Specimen part, Disease, Disease stage
View SamplesLasting behavioral and physiological changes such as abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to these brain adaptations leading to ethanol toxicity and abuse. Here we employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has previously been shown to induce progressive ethanol consumption in rodents. Brain regional expression networks contributing to CIE-induced behavioral changes were identified by microarray analysis across five brain regions in the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-120 hours following the last cycle of CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis of CIE vs. air-treated controls showed that long-lasting gene regulation occurred 5-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. In the majority of brain-regions, however, ethanol regulated gene expression changes occurred only immediately following CIE or within the first 8-hours of removal from ethanol.
Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.
Sex, Specimen part
View SamplesLasting behavioral and physiological changes such as abusive consumption, dependence, and withdrawal are characteristic features of alcohol use disorders (AUD). Mechanistically, persistent changes in gene expression are hypothesized to contribute to these brain adaptations leading to ethanol toxicity and abuse. Here we employed repeated chronic intermittent ethanol (CIE) exposure by vapor chamber as a mouse model to simulate the cycles of ethanol exposure and withdrawal commonly seen with AUD. This model has previously been shown to induce progressive ethanol consumption in rodents. Brain regional expression networks contributing to CIE-induced behavioral changes were identified by microarray analysis across five brain regions in the mesolimbic dopamine system and extended amygdala with tissue harvested from 0-120 hours following the last cycle of CIE. Weighted Gene Correlated Network Analysis (WGCNA) was used to identify gene networks over-represented for CIE-induced temporal expression changes across brain regions. Differential gene expression analysis of CIE vs. air-treated controls showed that long-lasting gene regulation occurred 5-days after the final cycle of ethanol exposure only in prefrontal cortex (PFC) and hippocampus. In the majority of brain-regions, however, ethanol regulated gene expression changes occurred only immediately following CIE or within the first 8-hours of removal from ethanol.
Time-Course Analysis of Brain Regional Expression Network Responses to Chronic Intermittent Ethanol and Withdrawal: Implications for Mechanisms Underlying Excessive Ethanol Consumption.
Sex, Specimen part
View Samples