Ribosome profiling of MDA-MB-231 cells treated with Silvestrol to monitor transcriptome wide, eIF4A-dependent changes in translation efficiency Overall design: Translation efficiency (TE) of mRNAs dervied from ribosome footprints was monitored in the presence or absence of 25 nM Silvestrol, an inhibitor of eukaryotic translation initiation factor 4A (eIF4A). Transcripts with reduced TE in the presence of Silvestrol were compare to transcripts with reduced TE in the presence of INK128, a catalytic mTOR inhbitor.
Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation.
No sample metadata fields
View SamplesThe adipocyte-derived hormone leptin maintains energy balance by acting on hypothalamic leptin receptors (Leprs) that trigger the signal transducer and activator of transcription 3 (Stat3). Although disruption of Lepr-Stat3 signaling promotes obesity in mice, other features of Lepr function, such as fertility, seem normal, pointing to the involvement of additional regulators. Here we show that the cyclic AMP responsive elementbinding protein-1 (Creb1)-regulated transcription coactivator-1 (Crtc1) is required for energy balance and reproductionCrtc1-/- mice are hyperphagic, obese and infertile. Hypothalamic Crtc1 was phosphorylated and inactive in leptin-deficient ob/ob mice; leptin administration increased amounts of dephosphorylated nuclear Crtc1. Dephosphorylated Crtc1 stimulated expression of the Cartpt and Kiss1 genes, which encode hypothalamic neuropeptides that mediate leptins effects on satiety and fertility. Crtc1 overexpression in hypothalamic cells increased Cartpt and Kiss1 gene expression, whereas Crtc1 depletion decreased it. Indeed, leptin enhanced Crtc1 activity over the Cartpt and Kiss1 promoters in cells overexpressing Lepr and these effects were disrupted by expression of a dominant-negative Creb1 polypeptide. As leptin administration increased recruitment of hypothalamic Crtc1 to Cartpt and Kiss1 promoters, our results indicate that the Creb1-Crtc1 pathway mediates the central effects of hormones and nutrients on energy balance and fertility.
The Creb1 coactivator Crtc1 is required for energy balance and fertility.
No sample metadata fields
View SamplesThe purpose of the study was to determine what genes in DN2 pro-T cells are immediately regulated by the transcription factor GATA-3, either as activation targets or as repression targets. To do this, two pairs of Gata3-floxed and control pro-T cells were generated and analyzed by RNA-seq within the first day of deletion of the Gata3 gene. Pro-T cells were generated by differentiation in vitro on OP9-DL1 monolayers of fetal liver-derive precursors from wildtype or Gata3-floxed mice, and the Gata3 gene was acutely deleted by transduction with Cre retroviral vector. Within 20 hr after transduction, samples of acutely Gata3-deleted and control DN2 cells were sorted and RNA prepared for RNA-seq analysis. High-throughput sequencing of the samples was carried out. Experimental Gata3 deleted samples in both cases were Gata3-floxed, ROSA26R-EYFP samples infected with Cre retrovirus and sorted for EYFP+ (Cre-activated) DN2 phenotype. Control for experiment 1: wildtype (C57BL/6) DN2 pro-T cells generated in parallel, also treated with Cre retrovirus but sorted only for DN2 phenotype. Control for experiment 2: same genotype as experimental, but infected with a GFP+ empty retroviral vector and sorted for GFP+ DN2 phenotype. Overall design: Two pairs of RNA-seq samples of DN2 pro-T cells were generated for comparison, each pair consisting of a Gata3-deleted sample plus a stage-matched control.
GATA-3 dose-dependent checkpoints in early T cell commitment.
No sample metadata fields
View SamplesThis study is aimed in identification of gene expression profiles in cervical cancer and the role of specific genes in cervical carcinogenesis.
Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression.
No sample metadata fields
View SamplesPurpose: Previous work has demonstrated that miR-33 is an important regulator of lipid metabolism and atherogenesis. By performing bone marrow transplant experiments into LDLR-/- mice, our work demonstrates that the effects of miR-33 in macrophages play a major role in its ability to reduced atherosclerotic plaque burdon. To have performed extensive additional characterization of the effects of miR-33 deficiency in macrophages icluding RNA-seq analysis of peritoneal macrophages from wildtype, miR-33-/-, LDLR-/-, and miR33-/-/LDLR-/- animals. Methods: Thioglycolate elicited peritoneal macrophages from WT and miR-33-/- mice were harvested by peritoneal lavage. Cells were then plated for 2hr, then washed to remove non-adherant cells. Macrophages were then scraped, pelleted and frozen at -80?C. Total RNA from WT and miR-33-/- thioglycollate-elicited peritoneal macrophages was extracted and purified using a RNA isolation Kit (Qiagen) followed by DNAse treatment to remove genomic contamination using RNA MinElute Cleanup (Qiagen). The purity and integrity of total RNA sample was verified using the Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA). rRNA was depleted from RNA samples using Ribo-Zero rRNA Removal Kit (Illumina). RNA libraries from WT BMDMs were performed TrueSeq Small RNA Library preparation (Illumina) and were sequenced for 45 cycles on Illumina HiSeq 2000 platformm (1 x 75bp read length). The reads obtained from the sequencer are trimmed for quality using in-house developed scripts. The trimmed reads are aligned to the reference genome using TopHat2. The transcript abundances and differences calculated using cuffdiff. The results were plotted using R and cummeRbund using in-house developed scripts. Results: Our RNA-seq analysis has allowed us to identify genes and pathways that are altered in miR-33 deficient peritoneal macrophages under hyperlipidemic conditions (LDLR-/- vs. miR33-/-/LDLR-/-). Further analysis of gene expression changes that occur between wildtype and LDLR-/- animals has allowed us to identify which of these changes are likely due to differences in lipid loading and which are independent of these effects. Overall design: 12 samples total (3 replicates each sample type)
Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of Atherosclerosis.
Age, Specimen part, Cell line, Subject
View SamplesResveratrol in high doses has been shown to extend lifespan in some studies in invertebrates and to prevent early mortality in mice fed a high-fat diet. We fed mice from middle age (14-months) to old age (30-months) either a control diet, a low dose of resveratrol (4.9 mg kg-1 day-1), or a calorie restricted (CR) diet and examined genome-wide transcriptional profiles.
A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice.
No sample metadata fields
View SamplesLittle is known about how pro-obesity diets regulate tissue stem and progenitor cell function. Here we find that high fat diet (HFD)-induced obesity augments the numbers and function of Lgr5+ intestinal stem cells (ISCs) of the mammalian intestine. Like HFD, ex vivo treatment of intestinal organoid cultures with palmitic acid (PA), a constituent of the HFD, enhances the self-renewal potential of these organoid bodies. Mechanistically, HFD induces a robust peroxisome proliferator-activated receptor delta (PPAR-delta signature in intestinal stem and progenitor cells and pharmacologic activation of PPAR-delta recapitulates the effects that HFD has on these cells. Interestingly, HFD- and agonist-activated PPAR-delta signaling endows organoid-initiating capacity to non-stem cells and enforced PPAR-delta signaling permits these non-stem cells to form in vivo tumors upon loss of the tumor suppressor Apc. These findings highlight how diet-modulated PPAR-delta activation alters not only the function of intestinal stem and progenitor cells but also their capacity to initiate tumors. Overall design: mRNA profiles of intestinal stem cells (GFP-Hi) and progenitors (GFP-Low) from WT or HFD fed mice were generated by deep sequencing using HiSeq 2000.
High-fat diet enhances stemness and tumorigenicity of intestinal progenitors.
No sample metadata fields
View SamplesWe characterized the Drosophila third instar eye disc using single cell RNA-seq and labelled the multiple cell populations. The results identified a novel transcriptional switch in photoreceptors relating to axonal projections. We then performed single cell RNA-seq on rbf (Rb) mutants and compared the results to the WT cell populations. This identified a specific cell population only in the Rb mutant tissue. This cell population has an upregulation of HIF1A and glycolitic genes such as Aldolase and Lactate dehydrogenase. As a result these cells produce lactate and undergo apoptosis. We also show this process to be directly regulated by E2F/Dp. The paper uncovers a novel metabolic aspect of Rb/E2F dependent apoptosis. Overall design: examining WT and Rb mutants third instar eye disc using single cell RNA-seq
Single cell RNA-sequencing identifies a metabolic aspect of apoptosis in Rbf mutant.
Specimen part, Subject
View SamplesInrauterine growth restriction was induced by chronic hyper insulinemia in pregnant rats and differential gene expression was studied using affymetrix rat genome RAE230A.Data was analysed using SAM.
Adult hypertension in intrauterine growth-restricted offspring of hyperinsulinemic rats: evidence of subtle renal damage.
No sample metadata fields
View SamplesA triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes.
A triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes.
No sample metadata fields
View Samples