Background: In the last decade, much attention has been drawn to probiotic bacteria in the context of inflammatory bowel disease (IBD), since the potential of certain strains to attenuate inflammation was demonstrated in several animal experiments and clinical studies. Data in humans elucidating the molecular mechanism of probiotic action are still scarce. To this end, we used an organ culture system of human colon mucosa and investigated the gene expression profiles after treatment with different probiotic bacteria in phorbol 12-myristate 13-acetate (PMA)/ionomycin (IO)) stimulated samples using whole genome microarrays. Moreover, we analyzed changes occurring in the intestinal explants cultured for 8 hours when compared to fresh, directly frozen mucosa, in order to infer the suitability of the system to study an inflammatory stimulus and likely antiinflammatory responses. Results: Culturing intestinal colon fragments during 8 hours elicited differential gene expression in 283 genes, 229 upregulated and 54 downregulated. Upregulated genes were predominantly related to apoptosis, whereas downregulated genes encoded mitochondrial proteins. No specific enrichment of genes related to inflammation or immune response could be detected, confirming the suitability of the system to further study the inmunomodulatory/anti-inflammatory properties of Lactobacillus casei BL23 (BL23), L.plantarum 299v (LP299v) and L.plantarum 299v (A-) (LP299v (A-)), a mutant strain with reduced adhesive properties to enterocytes. Intestinal explants were stimulated with PMA/IO for 3 hours and subsequently incubated with probiotic bacteria for 4 h. ANOVA analysis (p 0,01) revealed 205 differentially expressed genes between Control, PMA/IO (Inflamed), and the 3 bacterial treatments. Most importantly, a number of PMA/IO induced genes related to immune response and immune system process such as IL-2, IFN-, IL17A and pro-inflammatory cytokines CXCL9 and CXCL11 were downregulated by BL23, LP299v and LP299v (A-). The behaviour of the three Lactobacillus strains was quite similar, although their presence induced differential expression of a small number of genes in a strain dependent manner. Conclusion: The human colon organ culture was found to be a suitable model for the study of inflammatory/anti-inflammatory stimuli, and therefore it constitutes a valuable tool to determine the inmunomodulatory effect of probiotic bacteria. The global transcriptional profile evoked by strains BL23, LP299v and LP299v (A-) in artificially inflamed tissue indicated a clear homeostasis restoring effect, including a decrease of the signals produced by activated T cells.
Lactobacillus paracasei and Lactobacillus plantarum strains downregulate proinflammatory genes in an ex vivo system of cultured human colonic mucosa.
Specimen part
View SamplesAbiotic stress is a major factor for crop productivity, a problem likely to be exacerbated by climate change. Improving the tolerance to environmental stress is one of the most important goals of crop breeding programmes. While the early responses to abiotic stress in plants are well studied, plant adaptation to enduring or recurring stress conditions has received little attention. This project investigates the molecular mechanism of the maintenance of acquired thermotolerance as a model case of stress memory in Arabidopsis. Arabidopsis seedlings acquire thermotolerance through a heat treatment at sublethal temperatures. To investigate the underlying mechanisms, we are investigating changes in the transcriptome at two timepoints after a heat acclimation treatment using Arabidopsis thaliana seedlings.
Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors.
Treatment
View SamplesPlants can be primed by a stress cue to mount a faster and stronger activation of defense mechanisms upon a subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress, a phenomenon known as transcriptional memory. The transcriptional memory in response to heat stress is not clear at the genome scale.
Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress.
Age, Specimen part
View SamplesTransposable elements (TEs) make up a large proportion of eukaryotic genomes. As their mobilization creates genetic variation that threatens genome integrity, TEs are epigenetically silenced through several pathways and this may spread to neighboring sequences. JUMONJI (JMJ) proteins can function as anti-silencing factors and prevent silencing of genes next to TEs. Whether TE silencing is counterbalanced by the activity of anti-silencing factors is still unclear. Here, we characterize JMJ24 as a regulator of TE silencing. We show that loss of JMJ24 results in increased silencing of the DNA transposon AtMu1c, while overexpression of JMJ24 reduces silencing. JMJ24 has a JumonjiC (JmjC) domain and two RING domains. JMJ24 auto-ubiquitinates in vitro, demonstrating E3 ligase activity of the RING domain(s). JMJ24-JmjC binds the N-terminal tail of histone H3 and full-length JMJ24 binds histone H3 in vivo. JMJ24 activity is anti-correlated with histone H3 lysine 9 dimethylation (H3K9me2) levels at AtMu1c. Double mutant analyses with epigenetic silencing mutants suggest that JMJ24 antagonizes histone H3K9me2, and requires H3K9 methyltransferases for its activity on AtMu1c. Genome-wide transcriptome analysis indicates that JMJ24 affects silencing at additional TEs. Our results suggest that the JmjC domain of JMJ24 has lost demethylase activity but has been retained as a binding domain for histone H3. This is in line with phylogenetic analyses indicating that JMJ24 [with the mutated JmjC domain] is widely conserved in angiosperms. Taken together, this study assigns a role in TE silencing to a conserved JmjC-domain protein with E3 ligase activity, but no demethylase activity.
A JUMONJI Protein with E3 Ligase and Histone H3 Binding Activities Affects Transposon Silencing in Arabidopsis.
No sample metadata fields
View SamplesSalmonella enterica serotype Typhimurium causes an acute inflammatory reaction in the cecum of streptomycin pre-treated mice. We determined global changes in gene expression elicited by serotype Typhimurium in the cecal mucosa. The gene expression profile was dominated by T cell derived cytokines and genes whose expression is known to be induced by these cytokines. Markedly increased mRNA levels of interferon (IFN-gamma), interleukin-22 (IL-22) and IL-17 were detected by quantitative real-time PCR. Furthermore, mRNA levels of genes whose expression is induced by IFN-gamma, IL-22 or IL-17, including macrophage inflammatory protein 2 (MIP-2), inducible nitric oxide synthase (Nos2), lipocalin-2, MIP-1alpha, MIP-1beta, and keratinocyte-derived cytokine (KC), were also markedly increased. To assess the importance of T cells in orchestrating this pro-inflammatory gene expression profile, we depleted T cells using a monoclonal antibody prior to investigating cecal inflammation caused by serotype Typhimurium in streptomycin pre-treated mice. Depletion of CD3+ T cells resulted in a dramatic reduction in gross pathology, a significantly reduced recruitment of neutrophils and a marked reduction in mRNA levels of IFN-gamma, IL-22, IL-17, iNOS, lipocalin-2 and KC. Our results suggest that T cells play an important role in amplifying inflammatory responses induced by serotype Typhimurium in the cecal mucosa.
T cells help to amplify inflammatory responses induced by Salmonella enterica serotype Typhimurium in the intestinal mucosa.
No sample metadata fields
View SamplesSalmonella enterica serotype Typhimurium cause a localized enteric infection in immunocompetent patients while human immunodeficiency virus (HIV)-infected patients develop a life threatening bacteremia. We used a rhesus macaque ileal loop model to study how simian immunodeficiency virus (SIV) infection triggers defects in mucosal barrier function that enhance S. Typhimurium dissemination. SIV infection resulted in significant depletion of CD4+ T cells in the intestinal mucosa. Gene expression profiling revealed a defective TH17 response (with suppression of IL-17 and IL-22 expression) and impaired homeostasis of the intestinal epithelium in SIV-infected animals during NTS infection. These findings correlated with an impaired ability of lamina propria CD4+ T cells from SIV-infected macaques to produce IL-17 upon ex vivo stimulation, while production of IFN-gamma was not affected. This cytokine imbalance in SIV-infected animals was associated with reduced expression of genes required for intestinal epithelial maintenance and repair, increased fluid secretion during NTS infection, epithelial damage and translocation of a non-invasive S. Typhimurium mutant. Although no defects in neutrophil recruitment were noted, the ileum of SIV-infected animals contained lower levels of the enzyme myeloperoxidase, which may indicate defects in neutrophil killing capacity. S. Typhimurium was recovered in markedly increased numbers from the mesenteric lymph nodes of SIV-infected macaques, illustrating the increased potential for systemic dissemination during co-infection. Our data suggest that SIV-infection causes a multi-factorial defect in mucosal barrier function that promotes bacterial dissemination.
Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut.
No sample metadata fields
View SamplesWe used the ileal loop model to assess the effects of enteric bacteria organisms on host gene expression in intestinal tissue independent of and following early SIV infection. SIV infection in the gut causes rapid and severe immune dysfunction and damage to the intestinal structure, this may alter the intimate interaction with lumenal organisms. This study was performed to determine whether early SIV infection, prior to the depletion of CD4+ T cells, can alter interaction of the host with pathogenic Salmonella serovar Typhimurium (ST) or commensal Lactobacillus plantarum (LP), and to further understand the earliest changes to the intestinal mucosa following SIV infection.
Early mucosal sensing of SIV infection by paneth cells induces IL-1β production and initiates gut epithelial disruption.
Specimen part
View SamplesThe biology of chronic myeloid leukemia (CML)-stem cells is still incompletely understood. Therefore, we previously developed an inducible transgenic mouse model in which stem cell targeted induction of BCR-ABL expression leads to chronic phase CML-like disease. Here, we now demonstrate that the disease is transplantable using BCR-ABL positive LSK cells (lin-Sca-1+c-kit+). Interestingly, the phenotype is enhanced when unfractionated bone marrow (BM) cells are transplanted. However, neither progenitor cells (lin-Sca-1-c-kit+) nor mature granulocytes (CD11b+Gr-1+), or potential stem cell niche cells were able to transmit the disease or alter the phenotype. The phenotype was largely independent of BCR ABL priming prior to transplant. However, BCR-ABL abrogated the potential of LSK cells to induce full blown disease in secondary recipients. Subsequently, we found that BCR-ABL increased the fraction of multipotent progenitor cells (MPP) at the expense of long term HSC (LT-HSC) in the BM. Microarray analyses of LSK cells revealed that BCR-ABL alters the expression of genes involved in proliferation, survival, and hematopoietic development. Our results suggest that BCR-ABL induces differentiation of LT-HSC and decreases their self renewal capacity. Furthermore, reversion of BCR-ABL eradicates mature cells while leukemic stem cells persist, giving rise to relapsed CML upon re-induction of BCR-ABL.
BCR-ABL enhances differentiation of long-term repopulating hematopoietic stem cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Increased DNA methylation of Dnmt3b targets impairs leukemogenesis.
Specimen part
View SamplesHere, we analyzed global gene expression changes that were associated with over expression of Dnmt3b in MLL-AF9 induced leukemias using the Affymetrix microarray platform.
Increased DNA methylation of Dnmt3b targets impairs leukemogenesis.
No sample metadata fields
View Samples