Nucleosomal incorporation of specialized histone variants is an important mechanism to generate different functional chromatin states. Here we report the identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y. Their mRNAs are found in certain human cell lines, in addition to several normal and malignant human tissues. In keeping with their primate-specificity, H3.X and H3.Y are detected in different brain regions. Transgenic H3.X and H3.Y proteins are stably incorporated into chromatin in a similar fashion to the known H3 variants. Importantly, we demonstrate biochemically and by mass spectrometry that endogenous posttranslationally modified H3.Y protein exists in vivo, and that stress-stimuli, such as starvation and cellular density, increase the abundance of H3.Y-expressing cells. Global transcriptome analysis revealed that knock-down of H3.Y affects cell growth and leads to changes in the expression of many genes involved in cell cycle control. Thus, H3.Y is a novel histone variant involved in the regulation of cellular responses to outside stimuli.
Identification and characterization of two novel primate-specific histone H3 variants, H3.X and H3.Y.
Cell line
View SamplesHearts of Myh6-MeCP2 transgenic mice and wildtype littermates were rapidly dissected and flash frozen.
Adrenergic Repression of the Epigenetic Reader MeCP2 Facilitates Cardiac Adaptation in Chronic Heart Failure.
Specimen part
View SamplesObjectives: The collagen VI related muscular dystrophies (COL6-RD), Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) are among the most common congenital muscular dystrophies, but the pathogenesis, including the role of mutant collagen VI in the matrix is poorly understood. To better define the pathways disrupted by mutations in collagen VI, we have used a transcriptional profiling approach with RNA-Seq to identify differentially expressed genes in COL6-RD patients from controls. Methods: We have used RNA-Seq to identify differentially expressed genes in cultured dermal fibroblasts from 13 COL6-RD patients (8 dominant negative and 5 null) and 6 controls. Sequence reads were analyzed using the TopHat/Cufflinks pipeline. Results: Differentially expressed transcripts between COL6-RD patient and control fibroblasts include upregulation of ECM components and downregulation of factors controlling matrix remodeling and repair. DN and null samples are differentiated by downregulation of genes involved with DNA replication and repair in null samples Overall design: Expression profiles of dermal fibroblasts from 13 COL6-RD patients with dominant negative (8) or null (5) mutations compared to 6 control fibroblasts.
Transcriptome profiling identifies regulators of pathogenesis in collagen VI related muscular dystrophy.
Specimen part, Subject
View SamplesWe previously reported a pathogenic de novo W342 mutation in the transcriptional corepressor CtBP1 in four independent patients with neurodevelopmental disabilities. Here, we report the clinical phenotypes of seven additional individuals with the same recurrent de novo CtBP1 mutation. Within this cohort we identified consistent CtBP1-related phenotypes of intellectual disability, ataxia, hypotonia and tooth enamel defects present in all patients. The W342 mutation in CtBP1 is located within a region implicated in a high affinity-binding cleft for CtBP-interacting proteins. Unbiased proteomic analysis demonstrated reduced interaction of several chromatin modifying factors with the CtBP1 W342 mutant. Genome-wide transcriptome analysis in human glioblastoma cells lines expressing -CtBP1 R342 (wt) or W342 mutation revealed changes in the expression profiles of genes controlling multiple cellular processes. Patient-derived dermal fibroblasts were found to be more sensitive to apoptosis during acute glucose deprivation compared to controls. Glucose deprivation strongly activated the BH3-only pro-apoptotic gene NOXA, suggesting a link between enhanced cell death and NOXA expression in patient fibroblasts. Our results suggest that context-dependent relief of transcriptional repression of the CtBP1 mutant W342 allele may contribute to deregulation of apoptosis in target tissues of patients leading to neurodevelopmental phenotypes. Overall design: Total RNA samples were isolated from 3 different cultures of HTB17 cells that overexpressed CtBP1 wt or the pathogenic mutant, W342 and analyzed by high- throughput RNA sequencing.
A pathogenic CtBP1 missense mutation causes altered cofactor binding and transcriptional activity.
Specimen part, Cell line, Subject
View Samples