Non-nutritive sweeteners like sucralose are consumed by billions of people. While animal and human studies have demonstrated a link between synthetic sweetener consumption and metabolic dysregulation, the mechanisms responsible remain unknown. Here we use a diet supplemented with sucralose to investigate the long-term effects of sweet/energy imbalance. In flies, chronic sweet/energy imbalance promoted hyperactivity, insomnia, glucose intolerance, enhanced sweet taste perception and a sustained increase in food and calories consumed, effects that are reversed upon sucralose removal. Mechanistically, this response was mapped to the ancient insulin, catecholamine, and NPF/NPY systems and the energy sensor AMPK, which together comprise a novel neuronal starvation response pathway. Interestingly, chronic sweet/energy imbalance promoted increased food intake in mammals as well, and this also occurs through an NPY-dependent mechanism. Together our data show that chronic consumption of a sweet/energy imbalanced diet triggers a conserved neuronal fasting response and increases the motivation to eat. Overall design: RNA-seq on Drosophila head samples fed control and sucralose diet
Sucralose Promotes Food Intake through NPY and a Neuronal Fasting Response.
Specimen part, Cell line, Subject
View SamplesGender dimorphism exists in the physiological response to diet and other environmental factors. Trans-hydrogenated fatty acid (TFA) intake is associated with an increase in coronary heart disease (CHD), and gender differences in the incidence of CHD are well documented. Neonatal administration of Monosodium Glutamate (MSG) causes stunted heart growth and hypoplasticity; and gender dimorphism at the growth hormone axis has been demonstrated in MSG-treated rodents. The identification of gender dimorphism in cardiac nutrigenomics may provide the basis for gender-specific medicine in the future.
Sex-dimorphism in cardiac nutrigenomics: effect of trans fat and/or monosodium glutamate consumption.
Sex, Specimen part
View SamplesTranscriptomic analysis of primary human umbilical vein endothelial cells (HUVEC). HUVEC were treated in vitro with CoCl2 to induce hypoxia, high glucose and high glucose plus hypoxia in different intervals (1, 3, 12 hours). Subsequently, the effect of metformin (anti-diabetic drug) on all conditions was studied to take advantage of transcriptomics to prospectively explore the mechanism of this drug to reduce the risk of cardiovascular diseases in type II diabetic patients.
Reference genes for expression studies in hypoxia and hyperglycemia models in human umbilical vein endothelial cells.
Specimen part
View SamplesThis dataset consists of single-cell RNA-seq (Drop-seq) data from thymi of day 14.5 mouse embryos. The sample includes the whole thymus, including mesenchyme, endothelium, epithelium, thymocytes, and other lymphocytes. The mouse is a Rag2-/- knockout. Overall design: 1 sample
Inferring population dynamics from single-cell RNA-sequencing time series data.
Specimen part, Subject
View SamplesCilia are ubiquitous cell surface projections that modulate various sensory- and motility based processes and are implicated in a growing number of multi-organ genetic disorders termed ciliopathies. As new components required for cilium biogenesis and function remain unidentified, we sought to further define and validate the transcriptional targets of the ciliogenic C. elegans RFX transcription factor DAF-19. To this end, transcriptional profiling of daf-19 mutants (which do not form cilia) and wild-type animals was performed using selectively staged embryos where ciliogenesis occurs in most ciliated sensory neurons
Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport.
Specimen part
View SamplesTranscriptomic analysis of primary CD34+ cells. CD34+ cell were induced in vitro with hypoxia (3 hours), high glucose and high glucose plus hypoxia. Subsequently, the effect of metformin (anti-diabetic drug) on all conditions was studied to take advantage of transcriptomics to prospectively explore the mechanism of this drug to reduce the risk of cardiovascular diseases in type II diabetic patients.
Metformin improves the angiogenic potential of human CD34⁺ cells co-incident with downregulating CXCL10 and TIMP1 gene expression and increasing VEGFA under hyperglycemia and hypoxia within a therapeutic window for myocardial infarction.
Specimen part
View SamplesExperiment: Establishment of expression profiles in a brain metastasis from a PTC (RNA processing and hybridization to Affymetrix microarray done twice to yield a technical replicate), in non-brain metastatic, stage III and IV PTCs, and primary brain tumors. Biostatistics analysis identified genes and biofunctions related to the brain metastatic PTC.
Microarray expression profiling identifies genes, including cytokines, and biofunctions, as diapedesis, associated with a brain metastasis from a papillary thyroid carcinoma.
Sex, Disease stage
View SamplesP. falciparum NF54 proliferates under micro-aerophilic conditions in an environment of 3% O2, 4% CO2, 93% N2. This strain was gradually adapted to proliferate under standard tissue culture conditions of 5% CO2/95% air (~19% O2) to generate P. falciparum HOX. We compared global gene expression profiles of the two strains to identify differences, if any.
Model system to define pharmacokinetic requirements for antimalarial drug efficacy.
No sample metadata fields
View SamplesBACKGROUND: Cadmium is implicated in prostate carcinogenesis, but its oncogenic action remains unclear.
Transcriptome analyses in normal prostate epithelial cells exposed to low-dose cadmium: oncogenic and immunomodulations involving the action of tumor necrosis factor.
Sex
View SamplesTimothy grass (TG) pollen is a common seasonal airborne allergen associated with symptoms ranging from mild rhinitis to severe asthma. The aim of this study was to characterize changes in TG-specific T cell responses as a function of seasonality. Peripheral blood mononuclear cells (PBMC) obtained either during the pollen season or out of season, from allergic individuals and non-allergic controls were stimulated either with TG extract or a pool of previously identified immunodominant antigenic regions. PBMC from in season allergic subjects exhibit higher IL-5 and IL-10 responses compared to out of season donors. In the case of non-allergic subjects, as expected we observed lower IL-5 responses and robust production of IFN? compared to allergic individuals. Strikingly, non-atopic donors exhibited an opposing pattern with decreased immune reactivity in-season. The broad downregulation in non-allergic donors indicates that healthy individuals are not oblivious to allergen exposure but rather react with an active modulation of the responses following the antigenic stimulus provided during the pollen season. Transcriptomic analysis of allergen-specific T cells defined genes modulated in concomitance with allergen exposure and inhibition of responses in non-allergic donors. Magnitude and functionality of T-helper cell responses differ substantially for in season versus out of season in allergic and non-allergic subjects. The results indicate specific and opposing modulation of immune responses following the antigenic stimulation during the pollen season. This seasonal modulation reflects the enactment of specific molecular programs associated with health and allergic disease. Overall design: 11 allergen-specific T cell RNA samples were analyzed: 5 isolated from PBMC of allergic individuals and 6 from non-allergic individuals (considered as the control group).
Lack of allergy to timothy grass pollen is not a passive phenomenon but associated with the allergen-specific modulation of immune reactivity.
No sample metadata fields
View Samples