This SuperSeries is composed of the SubSeries listed below.
Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition.
Cell line
View SamplesHuman LIN28A and B are RNA-binding proteins (RBPs) conserved in animals with important roles during development and stem cell reprogramming. We used Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) in HEK293 cells and identified a largely overlapping set of ~3,000 mRNAs at ~9,500 sites located in the 3UTR and CDS. In vitro and in vivo, LIN28 preferentially bound single-stranded RNA containing a uridine-rich element and one or more flanking guanosines, and appeared to be able to disrupt base-pairing to access these elements when embedded in predicted secondary structure. In HEK293 cells, LIN28 protein binding mildly stabilized target mRNAs and increased protein abundance. The top targets were its own mRNAs and those of other RBPs and cell-cycle regulators. Alteration of LIN28 protein levels also negatively regulated the abundance of some, but not all let-7 miRNA family members, indicating sequence-specific binding of let-7 precursors to LIN28 proteins and competition with cytoplasmic miRNA biogenesis factors.
Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition.
Cell line
View SamplesHuman LIN28A and B are RNA-binding proteins (RBPs) conserved in animals with important roles during development and stem cell reprogramming. We used Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) in HEK293 cells and identified a largely overlapping set of ~3,000 mRNAs at ~9,500 sites located in the 3’UTR and CDS. In vitro and in vivo, LIN28 preferentially bound single-stranded RNA containing a uridine-rich element and one or more flanking guanosines, and appeared to be able to disrupt base-pairing to access these elements when embedded in predicted secondary structure. In HEK293 cells, LIN28 protein binding mildly stabilized target mRNAs and increased protein abundance. The top targets were its own mRNAs and those of other RBPs and cell-cycle regulators. Alteration of LIN28 protein levels also negatively regulated the abundance of some, but not all let-7 miRNA family members, indicating sequence-specific binding of let-7 precursors to LIN28 proteins and competition with cytoplasmic miRNA biogenesis factors. Overall design: To assess whether miRNAs are regulated by LIN28B we analyzed the miRNA levels of LIN28B overexpressing and LIN28B-depleted cells using small RNA cDNA library sequencing. The RBP LIN28B was depleted by siRNAs and the expression levels was compared to mock-transfected HEK293 cells.
Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition.
Cell line, Subject
View SamplesHuman LIN28A and B are RNA-binding proteins (RBPs) conserved in animals with important roles during development and stem cell reprogramming. We used Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP) in HEK293 cells and identified a largely overlapping set of ~3,000 mRNAs at ~9,500 sites located in the 3’UTR and CDS. In vitro and in vivo, LIN28 preferentially bound single-stranded RNA containing a uridine-rich element and one or more flanking guanosines, and appeared to be able to disrupt base-pairing to access these elements when embedded in predicted secondary structure. In HEK293 cells, LIN28 protein binding mildly stabilized target mRNAs and increased protein abundance. The top targets were its own mRNAs and those of other RBPs and cell-cycle regulators. Alteration of LIN28 protein levels also negatively regulated the abundance of some, but not all let-7 miRNA family members, indicating sequence-specific binding of let-7 precursors to LIN28 proteins and competition with cytoplasmic miRNA biogenesis factors. Overall design: LIN28 protein PAR-CLIP
Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
FMRP targets distinct mRNA sequence elements to regulate protein expression.
Cell line
View SamplesFragile-X Syndrome (FXS) is a multi-organ disease leading to mental retardation, macro-orchidism in males, and premature ovarian insufficiency in female carriers. FXS is also a prominent monogenic disease associated with autism spectrum disorders (ASD). FXS is typically caused by the loss of FRAGILE X-MENTAL RETARDATION 1 (FMR1) expression, which encodes for the RNA-binding protein (RBP), FMR1 (or FMRP). We report the discovery of the RNA recognition elements (RREs), binding sites, and mRNA targets for wild-type and I304N mutant FMRP isoforms as well as its paralogs, FXR1 and FXR2. RRE frequency, ratio, and distribution determine target mRNA association with FMRP. Among highly-enriched targets, we identified many genes involved in ASD and demonstrate that FMRP can affect their protein levels in cell culture, mice, and human brain. Unexpectedly, we discovered that these targets are also dysregulated in Fmr1-/- mouse ovaries, showing signs of premature follicular overdevelopment. These results indicate that FMRP targets shared signaling pathways across different cellular contexts. As it is become increasingly appreciated that signaling pathways are important to FXS and ASD, our results here provide an invaluable molecular guide towards the pursuit of novel therapeutic targets for these devastating neurological disorders.
FMRP targets distinct mRNA sequence elements to regulate protein expression.
Cell line
View SamplesThere is increasing evidence that breast and other cancers originate from and are maintained by a small fraction of stem/progenitor cells with self-renewal properties. Whether such cancer stem/progenitor cells originate from normal stem cells based on initiation of a de novo stem cell program, by reprogramming of a more differentiated cell type by oncogenic insults or both remains unresolved. A major hurdle in addressing these issues is lack of immortal human stem/progenitor cells that can be deliberately manipulated in vitro. We present evidence that normal and human telomerase reverse transcriptase (hTERT)-immortalized human mammary epithelial cells (hMECs) isolated and maintained in DFCI-1 medium retain a fraction with progenitor cell properties. These cells co-express basal, luminal and stem/progenitor cell markers. Clonal derivatives of progenitors co-expressing these markers fall into two distinct types: K5+/K19- (Type I) and K5+/K19+ (Type II). We show that both types of progenitor cells have self-renewal and differentiation ability. Through microarray analysis, we want to identify genes and pathways linked to human mammary epithelial stem/progenitor cell self-renewal and differentiation.
Telomerase-immortalized human mammary stem/progenitor cells with ability to self-renew and differentiate.
Sex, Specimen part
View SamplesMast cells, activated by antigen via the high affinity receptor for IgE (FcRI), release an array of pro-inflammatory mediators that contribute to allergic disorders such as asthma and anaphylaxis. The KIT ligand, stem cell factor (SCF), is critical for mast cell expansion, differentiation and survival, and, under acute conditions, enhances mast cell activation. However, extended SCF exposure in vivo conversely protects against fatal antigen-mediated anaphylaxis. In investigating this dichotomy, we identified a novel mode of regulation of the mast cell activation phenotype through SCF-mediated programming. We found that mouse bone marrow-derived mast cells chronically exposed to SCF displayed a marked attenuation of FcRI-mediated degranulation and cytokine production. The hypo-responsive phenotype was not a consequence of altered signals regulating calcium flux or protein kinase C, but of ineffective cytoskeletal reorganization, with evidence implicating a down-regulation of expression of the Src kinase Hck. Collectively, these findings demonstrate a major role for SCF in the homeostatic control of mast cell activation with potential relevance to mast cell-driven disease and the development of novel approaches for the treatment of allergic disorders.
Stem cell factor programs the mast cell activation phenotype.
Specimen part, Treatment
View SamplesWe used microarrays to detail the global programme of gene expression after knockdown of Ecdysoneless in hMECs
The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells.
Specimen part, Cell line
View SamplesInterleukin-33 (IL-33) is elevated in afflicted tissues of patients with mast cell-dependent chronic allergic diseases. Based on its acute effects on mouse mast cells (MCs), IL-33 is thought to play a role in the pathogenesis of allergic disease through MC activation. However, the manifestations of chronic IL-33 exposure on human MC function, which best reflect the conditions associated with chronic allergic disease, are unknown. We now find that long-term exposure of human and mouse MCs to IL-33 results in a substantial reduction of MC activation in response to antigen. This reduction required >72 h exposure to IL-33 for onset and 1-2 wk for reversion following IL-33 removal. This hypo-responsive phenotype was determined to be a consequence of MyD88-dependent attenuation of signaling processes necessary for MC activation including antigen-mediated calcium mobilization and cytoskeletal reorganization; potentially as a consequence of down-regulation of the expression of PLCg1 and Hck. These findings suggest that IL-33 may play a protective, rather than a causative role in MC activation under chronic conditions and, furthermore, reveal regulated plasticity in the MC activation phenotype. The ability to down-regulate MC activation in this manner may provide alternative approaches for treatment of MC-driven disease.
IL-33 induces a hyporesponsive phenotype in human and mouse mast cells.
Specimen part, Treatment
View Samples