We have used a combination of three high-throughput RNA capture and sequencing methods to refine and augment the transcriptome map of a well studied genetic model, Caenorhabditis elegans. The three methods include a standard (non-directional) library preparation protocol relying on cDNA priming and foldback that has been used in several previous studies for transcriptome characterization in this species, and two directional protocols, one involving direct capture of single stranded RNA fragments and one involving circular-template PCR (circligase). We find that each RNA-seq approach shows specific limitations and biases, with the application of multiple methods providing a more complete map than was obtained from any single method. Of particular note in the analysis were substantial advantages of circligase-based and ssRNA-based capture for defining sequences and structures of the precise 5'' ends (which were lost using the double strand cDNA capture method). Of the three methods, ssRNA capture was most effective in defining sequences to the polyA junction. Using datasets from a spectrum of C. elegans strains and stages and the UCSC Genome Browser, we provide a series of tools, which facilitate rapid visualization and assignment of gene structures. Overall design: single-strand-capture, double-strand-capture, and circligase-based RNA-seq
Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.
Sex, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Intrinsic self-DNA triggers inflammatory disease dependent on STING.
Specimen part
View SamplesInflammatory diseases such as Aicardi-Goutieres Syndrome (AGS) and severe systemic lupus erythematosus (SLE) are generally lethal disorders that have been traced to defects in the exonuclease Trex1 (DNAseIII). Mice lacking Trex1 similarly die at an early age through comparable symptoms, including inflammatory myocarditis, through chronic activation of the STING (stimulator of interferon genes) pathway. Here we demonstrate that phagocytes rather than myocytes are predominantly responsible for causing inflammation, an outcome that could be alleviated following adoptive transfer of normal bone marrow into Trex1-/- mice. Trex1-/- macrophages did not exhibit significant augmented ability to produce pro-inflammatory cytokines compared to normal macrophages following exposure to STING-dependent activators, but rather appeared chronically stimulated by genomic DNA. These results shed molecular insight into inflammation and provide concepts for the design of new therapies.
Intrinsic self-DNA triggers inflammatory disease dependent on STING.
Specimen part
View SamplesActivation of the STING (Stimulator of Interferon Genes) pathway by microbial or self-DNA, as well as cyclic di nucleotides (CDN), results in the induction of numerous genes that suppress pathogen replication and facilitate adaptive immunity. However, sustained gene transcription is rigidly prevented to avoid lethal STING-dependent pro-inflammatory disease by mechanisms that remain unknown. We demonstrate here that after autophagy-dependent STING delivery of TBK1 (TANK-binding kinase 1) to endosomal/lysosomal compartments and activation of transcription factors IRF3 (interferon regulatory factors 3) and NF-B (nuclear factor kappa beta), that STING is subsequently phosphorylated by serine/threonine UNC-51-like kinase (ULK1/ATG1) and IRF3 function is suppressed. ULK1 activation occurred following disassociation from its repressor adenine monophosphate activated protein kinase (AMPK), and was elicited by CDNS generated by the cGAMP synthase, cGAS. Thus, while CDNs may initially facilitate STING function, they subsequently trigger negative-feedback control of STING activity, thus preventing the persistent transcription of innate immune genes.
Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling.
Age, Specimen part, Treatment
View SamplesInflammatory diseases such as Aicardi-Goutieres Syndrome (AGS) and severe systemic lupus erythematosus (SLE) are generally lethal disorders that have been traced to defects in the exonuclease Trex1 (DNAseIII). Mice lacking Trex1 similarly die at an early age through comparable symptoms, including inflammatory myocarditis, through chronic activation of the STING (stimulator of interferon genes) pathway. Here we demonstrate that phagocytes rather than myocytes are predominantly responsible for causing inflammation, an outcome that could be alleviated following adoptive transfer of normal bone marrow into Trex1-/- mice. Trex1-/- macrophages did not exhibit significant augmented ability to produce pro-inflammatory cytokines compared to normal macrophages following exposure to STING-dependent activators, but rather appeared chronically stimulated by genomic DNA. These results shed molecular insight into inflammation and provide concepts for the design of new therapies.
Intrinsic self-DNA triggers inflammatory disease dependent on STING.
Specimen part
View SamplesPrevalence and severity of allergic diseases have increased worldwide. To date, respiratory allergy phenotypes are not fully characterized and, in addition, the mechanisms underlying sublingual immunotherapy (SLIT) are still unknown.
Exploring novel systemic biomarker approaches in grass-pollen sublingual immunotherapy using omics.
Specimen part, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
STING-Dependent Signaling Underlies IL-10 Controlled Inflammatory Colitis.
Specimen part
View SamplesThat commensal bacteria can influence intestinal inflammation has been observed using other models of chronic colitis. Loss of IL-10, a major immunosuppressive cytokine, induces spontaneous colitis in mice. The incidence of spontaneous polyp formation in IL-10-deficient mice was also completely eliminated in the absence of STING
STING-Dependent Signaling Underlies IL-10 Controlled Inflammatory Colitis.
Specimen part
View SamplesMyD88 may play a direct role in STING-dependent signaling, or alternatively that STING-dependent pro-inflammatory cytokines may require downstream MyD88-dependent signaling to exert their effect.
STING-Dependent Signaling Underlies IL-10 Controlled Inflammatory Colitis.
Specimen part
View SamplesComparisons of expression profils of human undiferentiated ES cells and Mesenchymal ES cells
Derivation of multipotent mesenchymal precursors from human embryonic stem cells.
No sample metadata fields
View Samples