A cardinal symptom of Major Depressive Disorder (MDD) is the disruption of circadian patterns. Yet, to date, there is no direct evidence of circadian clock dysregulation in the brains of MDD patients. Circadian rhythmicity of gene expression has been observed in animals and peripheral human tissues, but its presence and variability in the human brain was difficult to characterize. Here we applied time-of-death analysis to gene expression data from high-quality postmortem brains, examining 24-hour cyclic patterns in six cortical and limbic regions of 55 subjects with no history of psychiatric or neurological illnesses ('Controls') and 34 MDD patients. Our dataset covered ~12,000 transcripts in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (AnCg), hippocampus (HC), amygdala (AMY), nucleus accumbens (NAcc) and cerebellum (CB). Several hundred transcripts in each region showed 24-hour cyclic patterns in Controls, and >100 transcripts exhibited consistent rhythmicity and phase-synchrony across regions. Among the top ranked rhythmic genes were the canonical clock genes BMAL1(ARNTL), PER1-2-3, NR1D1(REV-ERB), DBP, BHLHE40(DEC1), and BHLHE41(DEC2). The phasing of known circadian genes was consistent with data derived from other diurnal mammals. Cyclic patterns were much weaker in MDD brains, due to shifted peak timing and potentially disrupted phase relationships between individual circadian genes. This is the first transcriptome-wide analysis of cyclic patterns in the human brain and demonstrates a rhythmic rise and fall of gene expression in regions outside of the suprachiasmatic nucleus in control subjects. The description of its breakdown in MDD suggest novel molecular targets for treatment of mood disorders.
Circadian patterns of gene expression in the human brain and disruption in major depressive disorder.
Subject
View SamplesRNA-seq profiling was conducted on clinically-annotated human post-mortem brain tissues Overall design: We measured the transcriptome in 281 clinically-annotated human post-mortem brain tissues
Post-mortem molecular profiling of three psychiatric disorders.
Sex, Specimen part, Race, Subject
View SamplesTranslation initiation factor eIF4E is overexpressed early in breast cancers in association with disease progression and reduced survival. Much remains to be understood regarding the role of eIF4E in human cancer. Using immortalized human breast epithelial cells, we report that elevated expression of elF4E translationally activates the TGF pathway, promoting cell invasion, loss of cell polarity, increased cell survival and other hallmarks of early neoplasia. Overexpression of eIF4E is shown to facilitate selective translation of integrin 1 mRNA, which drives the translationally controlled assembly of a TGF receptor signaling complex containing 31 integrins, -catenin, TGF receptor I, E-cadherin and phosphorylated Smads2/3. This receptor complex acutely sensitizes non-malignant breast epithelial cells to activation by typically sub-stimulatory levels of activated TGF. TGF can promote cellular differentiation or invasion and transformation. As a translational coactivator of TGF, eIF4E confers selective mRNA translation, reprogramming non-malignant cells to an invasive phenotype by reducing the set-point for stimulation by activated TGF. Overexpression of eIF4E may be a pro-invasive facilitator of TGF activity.
Eukaryotic Translation Initiation Factor 4E Is a Feed-Forward Translational Coactivator of Transforming Growth Factor β Early Protransforming Events in Breast Epithelial Cells.
Sex, Specimen part, Cell line
View SamplesSeptic shock is the most severe complication of sepsis, associated with high mortality. The patient's response to supportive therapy is very heterogeneous and the underlying mechanisms are still elusive. In order to identify which are the actors (genes and pathways) that play a role in establishing the response, we investigate the whole blood transcriptome in septic shock patients with positive and negative responses to early supportive hemodynamic therapy, assessed by changes in SOFA scores within the first 48 hours from ICU admission. We pinpointed genes and pathways that are differently modulated and enriched respectively within 48hrs between responders and non-responders. Overall design: We analyzed 31 patients (17 Responders and 14 Not Responders to early therapy). For each patient, 2 samples were collected. In particular the first sample (T1) collected within 16 hours from ICU admission whereas the second (T2) collected within 48 hours from ICU admission. Experimental groups (Responders and Not Responders) are defined accordingly with SOFA scores improvements within 48 hours.
Identification of a transcriptome profile associated with improvement of organ function in septic shock patients after early supportive therapy.
Specimen part, Subject, Time
View SamplesNew and effective therapeutical options are available for the treatment of Rheumatoid Arthritis. One of such treatments is rituximab, and chimeric anti-CD20 antibody that selectively depletes the CD20+ B cell subpopulation.
Identification of candidate genes for rituximab response in rheumatoid arthritis patients by microarray expression profiling in blood cells.
Specimen part, Disease, Disease stage
View SamplesWe developed a mouse model that captures radiation effects on host biology by transplanting unirradiated Trp53 null mammary tissue to sham or irradiated hosts. Gene expression profiles of tumors that arose in irradiated mice are distinct from those that arose in nave hosts.
Murine microenvironment metaprofiles associate with human cancer etiology and intrinsic subtypes.
Specimen part
View SamplesWe sought to find a gene-expression multigene predictor of response to infliximab therapy in Rheumatoid Arthritis patients. Using internal and external cross-validation systems we have built and validated an 8-gene predictor for response to infliximab.
An eight-gene blood expression profile predicts the response to infliximab in rheumatoid arthritis.
Sex, Specimen part, Disease, Disease stage
View SamplesDensely ionizing radiation is a major component of the space radiation environment and has potentially greater carcinogenic effect compared to sparsely ionizing radiation that is prevalent in the terrestrial environment. It is unknown to what extent the irradiated microenvironment contributes to the differential carcinogenic potential of densely ionizing radiation. To address this gap, 10-week old BALB/c mice were irradiated with 100 cGy sparsely ionizing g-radiation or 10, 30, or 80 cGy of densely ionizing, 350 MeV/amu Si particles and transplanted 3 days later with syngeneic Trp53 null mammary fragments. Tumor appearance was monitored for 600 days. Tumors arising in Si-particle irradiated mice had a shorter median time to appearance, grew faster and were more likely to metastasize. Most tumors arising in sham-irradiated mice were ER-positive, pseudo-glandular and contained both basal keratin 14 and luminal keratin 8/18 cells (designated K14/18), while most tumors arising in irradiated hosts were K8/18 positive (designated K18) and ER negative. Comparison of K18 vs K14/18 tumor expression profiles showed that genes increased in K18 tumors were associated with ERBB2 and KRAS while decreased genes overlapped with those down regulated in metastasis and by loss of E-cadherin. Consistent with this, K18 tumors grew faster than K14/18 tumors and more mice with K18 tumors developed lung metastases compared to mice with K14/18 tumors. However, K18 tumors arising in Si-particle irradiated mice grew even faster and were more metastatic compared to control mice. A K18 Si-irradiated host profile was enriched in genes involved in mammary stem cells, stroma, and Notch signaling. Thus systemic responses to densely ionizing radiation enriches for a ER-negative, K18-positive tumor, whose biology is more aggressive compared to similar tumors arising in non-irradiated hosts.
Densely ionizing radiation acts via the microenvironment to promote aggressive Trp53-null mammary carcinomas.
No sample metadata fields
View SamplesTransforming growth factor beta-1 (TGFbeta) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGFbeta activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGFbeta-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGFbeta (0.4 ng/ml), or double-treated. All double-treated (IR+TGFbeta) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, beta-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel. Neither radiation nor TGFbeta alone elicited EMT, even though IR increased chronic TGFbeta signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGFbeta-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGFbeta, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.
Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor beta induced epithelial to mesenchymal transition.
No sample metadata fields
View SamplesAccumulating data support the concept that ionizing radiation therapy (RT) has the potential to convert the tumor into an in situ, individualized vaccine; however this potential is rarely realized by RT alone. Transforming growth factor (TGF) is an immunosuppressive cytokine that is activated by RT and inhibits the antigen-presenting function of dendritic cells and the differentiation of effector CD8+ T cells. Here we tested the hypothesis that TGF hinders the ability of RT to promote anti-tumor immunity. Development of tumor-specific immunity was examined in a pre-clinical model of metastatic breast cancer.
TGFβ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity.
Sex, Specimen part
View Samples