The data present global gene expression profile of whole human bones, implanted in SCID mice (SCID-hu model), then engrafted with the myeloma cell line, Hg, and treated with saline or PTH for 4 weeks.
Consequences of daily administered parathyroid hormone on myeloma growth, bone disease, and molecular profiling of whole myelomatous bone.
Specimen part, Treatment
View SamplesCytogenetic abnormalities (CA) are important clinical parameters in various types of cancer, including multiple myeloma (MM). We developed a model to predict CA in patients with MM using gene expression profiling (GEP) and validated it by different cytogenetic techniques. The model was shown to have an accuracy up to 0.89. These results provide proof of concept for the hypothesis that GEP could serve as a one-stop data source for clinical molecular diagnosis and/or prognosis.
Prediction of cytogenetic abnormalities with gene expression profiles.
Specimen part, Disease, Disease stage, Subject
View SamplesThis Series represents the gene expression profiles of patients with multiple myeloma who have been treated previously. In brief, Total Therapy 6 (TT6) is an open label phase 2 protocol for patients with symptomatic multiple myeloma, who had been treated with more than one cycle of prior therapy excluding autologous hematopoietic stem cell transplant. This protocol was approved by the institutional review board on March 25, 2009 (IRB#108053). The TT6 treatment regimen consists of induction therapy with Melphalan/Bortezomib/Thalidomide/Dexamethasone/Cisplatin/Doxorubicin/Cyclophosphamide/Etoposide (M-VTD-PACE) followed by a high dose M-VTD-PACE based tandem transplant. Maintenance therapy consists of Bortezomib/Lenalidomide/Dexamethasone alternating with Borteomib/Melphalan/Dexamethasone every months for 3 years.
Five gene probes carry most of the discriminatory power of the 70-gene risk model in multiple myeloma.
Specimen part, Disease, Treatment
View SamplesMesenchymal stem cells (MSCs) are an essential component of the bone marrow (BM) microenvironment and have shown to support cancer evolution in multiple myeloma (MM). Despite the increasing evidence that MM MSCs differ from their healthy counterparts, little knowledge exists as to whether MSCs independently influence disease outcome. The aim of the present study was to determine the importance of MSCs in disease progression and outcome in MM.
The Pattern of Mesenchymal Stem Cell Expression Is an Independent Marker of Outcome in Multiple Myeloma.
Specimen part, Disease, Subject
View SamplesThis series represents bone marrow aspirates from smoldering multiple myeloma patients
Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis.
No sample metadata fields
View SamplesWe used microarray analyses of patient myeloma cells (n=52) to correlate individual miRNA expression profiles with GEP-based risk defined by mRNA expression profilesx as well as clinical features of the disease. Unlike for mRNAs, genome-wide elevation of miRNA expression patterns were significantly positively associated with a mRNA-based GEP-risk score (P <.01) and proliferation index (P <.05). Consistent with our observation of global deregulation of miRNA expression profiles, silencing EIF2C2/AGO2, a gene component of the mRNA-based high-risk signature and a master regulator of the genesis and functionality of all miRNAs, dramatically decreased viability in myeloma cell lines.
High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2.
Specimen part, Disease, Disease stage, Subject
View SamplesPurpose: Because dexamethasone remains a key component of myeloma therapy, we wished to examine the correlation of baseline and relapse expression levels of the glucocorticoid receptor gene NR3C1 with other clinical features. Experimental Design: We investigated the clinical impact of gene expression profiling (GEP)derived expression levels of NR3C1 in 351 patients with GEP data available at baseline and in 130 with data available at relapse, among 668 subjects accrued to Total Therapy 2 (TT2).
Thalidomide in total therapy 2 overcomes inferior prognosis of myeloma with low expression of the glucocorticoid receptor gene NR3C1.
Disease, Treatment
View SamplesNatural Killer cells (NK), a major constituent of innate immune system, have the ability to kill the transformed and infected cells without prior sensitization; can be put to immunotherapeutic use against various malignancies. NK cells discriminate between normal cells and transformed cells via a balance of inhibitory and activating signals induced by interactions between NK cell receptors and target cell ligands. Present study investigates whether expansion of NK cells could augment their anti-myeloma (MM) activity. For NK cell expansion, peripheral blood mononuclear cells from healthy donors and myeloma patients were co-cultured with irradiated K562 cells transfected with 4-1BBL and membrane-bound IL15 (K562-mb15-41BBL). A genome-wide profiling approach was performed to identify gene expression signature in expanded NK (ENK) cells and non-expanded NK cells isolated from healthy donors and myeloma patients. A specific set of genes involved in proliferation, migration, adhesion, cytotoxicity, and activation were up regulated post expansion, also confirmed by flow cytometry. Exp-NK cells killed both allogeneic and autologous primary MM cells more avidly than non-exp-NK cells in vitro. Multiple receptors, particularly NKG2D, natural cytotoxicity receptors, and DNAM-1 contributed to target lysis, via a perforin mediated mechanism. In summary, vigorous expansion and high anti-MM activity both in vitro and in vivo provide the rationale for testing exp-NK cells in a clinical trial for high risk MM.
Highly activated and expanded natural killer cells for multiple myeloma immunotherapy.
Specimen part, Subject
View SamplesTo elucidate the mechanisms underlying relapse from chemotherapy in multiple myeloma we performed a longitudinal study of 33 patients entered into Total Therapy protocols investigating them using gene expression profiling, high resolution copy number arrays and whole exome sequencing. The study illustrates the mechanistic importance of acquired mutations in known myeloma driver genes and the critical nature of bi-allelic inactivation events affecting tumor suppressor genes, especially TP53. The end result being resistance to apoptosis and increased proliferation rates, which drive relapse by Darwinian type clonal evolution. The number of copy number aberration changes and bi-allelic inactivation of tumor suppressor genes was increased in GEP70 high risk, consistent with genomic instability being a key feature of high risk. In conclusion, the study highlights the impact of acquired genetic events, which enhance the evolutionary fitness level of myeloma propagating cells to survive multi-agent chemotherapy and to result in relapse.
Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma.
Sex, Specimen part, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance.
Specimen part, Disease
View Samples