We deleted Tfr1 in the heart to determine the role of Tfr1 in iron uptake in normal cardiac funciton We used microarrays to identify global gene changes associated with deletion of Tfr1 in skeletal muscle
Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
CLL intraclonal fractions exhibit established and recently acquired patterns of DNA methylation.
Sex, Specimen part, Subject
View SamplesIntraclonal subpopulations of circulating chronic lymphocytic leukemia (CLL) cells with different proliferative histories and reciprocal surface expression of CXCR4 and CD5 have been observed in the peripheral blood of CLL patients and named proliferative (PF), intermediate (IF) and resting (RF) cellular fractions. Transcriptional differences between paired intraclonal fractions confirmed their proliferative experience and further supported a linear advancement from PF to RF in the peripheral blood. Marked expression differences in intraclonal fractions suggest potential pathological and therapeutic relevance of studying intraclonal CLL fractions as compared to bulk cells.
CLL intraclonal fractions exhibit established and recently acquired patterns of DNA methylation.
Sex, Specimen part, Subject
View SamplesBone morphogenetic proteins (BMPs) are transforming growth factor (TGF) family members that regulate the post-implantation and mid-gestation stages of pregnancy. In this study we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. To understand the role of ALK3 in the luminal uterine epithelium, we obtained the gene expression profiles of isolated luminal uterine epithelium from 3.5dpc control and Alk3 cKO mice.
Uterine ALK3 is essential during the window of implantation.
Specimen part, Time
View SamplesDifferential gene expression profiling was performed in two lymphoblastoid cell lines with different radiosentivitity, one radiosensitive (RS) and another radioresistant (RR), after different post-irradiation times. A greater and a prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in DNA damage response, negative regulation of the cell cycle and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. Overall design: Sham-irradiated and irradiated (2 Gy) cell cultures of the RS and the RR cell line were incubated at 37ºC for 4 and 24 h and 14 days. After that, RNA was extracted and sequenced with QuantSeq technology
Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line.
Specimen part, Cell line, Treatment, Subject, Time
View SamplesBovine papillomavirus (BPV) is the causative agent of papillomatosis in cattle. The disease causes cutaneous and mucosal lesions that can be minimized or lead to the appearance of malignant tumors. This study aims to identify possible molecular mechanisms that are behind the pathological processes associated with bovine papillomatosis through the identification of genes related to the development of the lesions. For this, next-generation RNA sequencing was used to assess differentially expressed genes in infected by BPV and non-infected bovines. Three animals with papillomatosis lesion and three without papillomatosis lesion were studied. The Galaxy platform was used to analyze the data generated by the sequencing. The Illumina output files were converted to FASTQ format. Quality evaluation was performed using FastQC and the sequence quality cut was performed using Trimmomatic. TopHat and Bowtie were used to map and align the reads with the reference genome. The abundance of the expressed genes was verified using Cuffilinks. Cuffdiff was used for differential expression analysis. Functional annotation of the differentially expressed genes was performed using Gene Ontology (GO) databases. RNA-sequencing generated a total of 121,722,238 of reads. In the gene expression analysis, a total of 13,421 genes expressed were identified and of these 1343 were differentially expressed. The functional annotation of differentially significant genes showed that many genes presented functions or they were related to metabolic pathways associated with the progression of papillomatosis lesions and cancer development in cattle. Although more studies are needed, this is the first study that focused on a large-scale evaluation of gene expression associated with the BPV infection, which is important to identify possible mechanisms regulated by the host genes that are necessary the development of the lesion Overall design: Analysis of three BPV infected and three BPV non-infected samples
Comparative transcriptomic analysis of bovine papillomatosis.
Age, Specimen part, Treatment, Subject
View SamplesCRISPR/Cas9-mediated Rgnef knockout was performed in the aggressive ID8-IPs (alternaate name is KMF cells). Gene expression profiles of Rgnef-/- or Rgnef-/- cells re-expressing GFP-Rgnef were generated. Differential downregulation of antioxidant genes was observed in Rgnef-/- cells. Results provide insight into the role of Rgnef in promoting ovarian tumor progression. Overall design: mRNA profiles of ID8-KMF Rgnef-/- or Rgnef-/- cell re-expressing GFP-Rgnef were generated in triplicate using an Illumina HiSeq 4000.
Rgnef promotes ovarian tumor progression and confers protection from oxidative stress.
Specimen part, Cell line, Subject
View SamplesSalp15, a salivary protein of Ixodes ticks, inhibits the activation of naïve CD4 T cells. Treatment with Salp15 results in immunomodulation in different murine models in which these cells participate. The fate of the CD4 T cells activated in the presence of the immunosuppressor or its long-term effects on these cells are however, unknown. We now show that Salp15 binding to CD4 is persistent and induces a long-lasting immunomodulatory effect. The activity of Salp15 results in sustained diminished antibody production against specific and unrelated antigens. Transcriptionally, the salivary protein provokes a sharp acute effect that includes known activation factors, such as Il2, Cd44, or Il2ra, and that fades over time. The long-term effects exerted by Salp15 do not involve the induction of either anergy traits nor increased populations of regulatory T cells. Similarly, the treatment with the immunomodulatory protein does not result in B cell anergy or the generation of myeloid suppressor cells. However, the immunomodulatory protein induces the increased expression of the ectoenzyme, CD73, in regulatory T cells. Our results suggest that the specific regulation of CD73, a known modulator of adenosine levels, by Salp15 results in long-term cross-antigenic immunomodulatory effects. Overall design: Genome-wide changes in gene Expression in mouse CD4 T cells activated with anti-CD3/CD28 in the presence of 25 ug/mL of the tick salivary protein, Salp15 or its inactive control (Salp15deltaP11) were generated by RNAseq.
The immunosuppressive effect of the tick protein, Salp15, is long-lasting and persists in a murine model of hematopoietic transplant.
Age, Specimen part, Cell line, Treatment, Subject, Time
View SamplesThe development of CRISPR-Cas systems for targeting DNA and RNA in diverse organisms has transformed biotechnology and biological research. Moreover, the CRISPR revolution has highlighted bacterial adaptive immune systems as a rich and largely unexplored frontier for discovery of new genome engineering technologies. In particular, the class 2 CRISPR-Cas systems, which use single RNA-guided DNA-targeting nucleases such as Cas9, have been widely applied for targeting DNA sequences in eukaryotic genomes. Here, we report DNA-targeting and transcriptional control with class I CRISPR-Cas systems. Specifically, we repurpose the effector complex from type I variants of class 1 CRISPR-Cas systems, the most prevalent CRISPR loci in nature, that target DNA via a multi-component RNA-guided complex termed Cascade. We validate Cascade expression, complex formation, and nuclear localization in human cells and demonstrate programmable CRISPR RNA (crRNA)-mediated targeting of specific loci in the human genome. By tethering transactivation domains to Cascade, we modulate the expression of targeted chromosomal genes in both human cells and plants. This study expands the toolbox for engineering eukaryotic genomes and establishes Cascade as a novel CRISPR-based technology for targeted eukaryotic gene regulation. Overall design: Examination of transcriptome-wide changes in gene expression with Cascade-mediated activation of endogenous genes.
Targeted transcriptional modulation with type I CRISPR-Cas systems in human cells.
Specimen part, Cell line, Subject
View SamplesPurpose: Identify whole lung gene expression patterns in a house dust mite model of mild/moderate asthma Methods: Lung gene expression profiles of 10 week old BALB/c female mice were generated by ribosome-depleted, 150 nt, paired-end, stranded RNA-seq with Illumina HiSeq v4. Sequence reads that passed quality filters after trimming were analyzed with Sailfish-cir to identify linear RNAs and circular RNAs. Differential expression of linear RNAs was assessed with Deseq2 . QRT–PCR validation was performed using TaqMan and SYBR Green methods. Results: 100 million sequence reads per sample were mapped to the mouse genome (build mm10) using Sailfish-cir to identify linear and circular RNA transcripts. Pathway analysis of differentially expressed genes identified upregulation of gene sets for human asthma, mouse lung allergic inflammation, Muc5ac regulated genes and smooth muscle genes after allergic sensitization. Gene level exppression in each asthma-related pathway was reduced by the miR-145 antagonist. The miR-145 antagonist and several nontargeting oligos also upregulated interferon signaling pathways suggesting a general antiinflammatory effect of LNA/DNA oligos in the lung. Conclusions: Lung-directed delivery of LNA/DNA oligonucleotides with cationic lipid nanoparticles is an efffective means to prevent inflammatory gene expression in a house dust mite model of mild/moderate asthma. Overall design: Linear and circular RNA transcript expression was compared in whole lung tissue from unsensitized, house dust mite sensitzed, antimiR-145 treated treated mice
Nanoparticle Delivery of Anti-inflammatory LNA Oligonucleotides Prevents Airway Inflammation in a HDM Model of Asthma.
Age, Specimen part, Cell line, Treatment, Subject
View Samples