Sox2 is required to maintain osteosarcoma cell tumor initiation.Knockdown of Sox2 leads tpo loss of tumorigenic properties. To examine gene expression changes upon Sox2 knockdown, we performed microarray analysis on mouse osteosarcoma cells expressing scrambled or Sox2shRNA. We found that genes upregulated upon Sox2 knockdown included osteoblast diffrentiation genes and genes down regulated included cell cycle and RNA processing genes as well as YAP-TEAD target genes.
Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells.
Specimen part, Cell line
View SamplesExpression profile for undifferentiated F9 Embryonal Carcinoma cell line
Identification of active transcriptional regulatory modules by the functional assay of DNA from nucleosome-free regions.
No sample metadata fields
View SamplesPatients with metastatic colorectal cancer were enrolled for treatment with cetuximab monotherapy. Transcriptional profiling was conducted on RNA from pre-treatment metastatic site biopsies to identify genes whose expression correlates with best clinical responses.
Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab.
Specimen part
View SamplesWe generated a gene replacement allele of the E-cadherin locus that express an N-cadherin-GFP fusion in ES cells. Expression profiles of homozygous and heterozygous knock-in ES cells were analyzed in comparison to wt ES cells.
Adhesion, but not a specific cadherin code, is indispensable for ES cell and induced pluripotency.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Human Hematopoietic Signal peptide-containing Secreted 1 (hHSS1) modulates genes and pathways in glioma: implications for the regulation of tumorigenicity and angiogenesis.
Specimen part, Cell line
View SamplesA172 cell lines were stable transfected with C19ORF63 (Human hematopoietic peptide secreted-1 - HSS1). HSS1 is a truly novel protein defining a new class of secreted factors. A172 cell line overexpressing HSS1 greatly reduced their proliferation rate compared to mock-transfected cells.
Human Hematopoietic Signal peptide-containing Secreted 1 (hHSS1) modulates genes and pathways in glioma: implications for the regulation of tumorigenicity and angiogenesis.
Specimen part, Cell line
View SamplesU87 cell lines were stable transfected with C19ORF63 (Human hematopoietic peptide secreted-1 - HSS1). HSS1 is a truly novel protein defining a new class of secreted factors. U87 cell line overexpressing HSS1 greatly reduced their proliferation rate compared to mock-transfected cells.
Human Hematopoietic Signal peptide-containing Secreted 1 (hHSS1) modulates genes and pathways in glioma: implications for the regulation of tumorigenicity and angiogenesis.
Specimen part, Cell line
View SamplesThe Mediator complex regulates gene transcription by linking basal transcriptional machinery with DNA-bound transcription factors. The activity of the Mediator complex is mainly controlled by a kinase submodule that is comprised of four proteins, including MED12. Although ubiquitously expressed, Mediator subunits can differentially regulate gene expression in a tissue-specific manner. Here, we report that MED12 is required for normal cardiac function such that mice with conditional cardiac-specific deletion of MED12 display progressive dilated cardiomyopathy. Loss of MED12 perturbs expression of calcium handling genes in the heart, consequently altering calcium cycling in cardiomyocytes and disrupting cardiac electrical activity. We identified transcription factors that regulate expression of calcium-handling genes that are downregulated in the heart in the absence of MED12, and found that MED12 localizes to transcription factor consensus sequences within calcium handling genes. We showed that MED12 interacts with one such transcription factor, MEF2, in cardiomyocytes, and that MED12 and MEF2 co-occupy promoters of calcium handling genes. Furthermore, we demonstrated that MED12 enhances MEF2 transcriptional activity and overexpression of both increases expression of calcium handling genes in cardiomyocytes. Our data support a role for MED12 as a coordinator of transcription through MEF2 and other transcription factors. We conclude that MED12 is a regulator of a network of calcium handling genes, consequently “mediating” contractility in the mammalian heart. Overall design: Ventricle mRNA profiles of 1-day old control (CTL, CreNEG) and cardiac-specific Med12 knockout mice (Med12cKO, CrePOS) were generated by deep sequencing, in triplicate, using Illumina.
MED12 regulates a transcriptional network of calcium-handling genes in the heart.
No sample metadata fields
View SamplesThe cochlea possesses a robust circadian clock machinery that regulates auditory function. How the cochlear clock is influenced by the circadian system remains unknown. Here we show that cochlear rhythms are system-driven and require local Bmal1 as well as central input from the suprachiasmatic nuclei (SCN). SCN ablations disrupted the circadian expression of the core clock genes in the cochlea. Since the circadian secretion of glucocorticoids (GCs) is controlled by the SCN and that GCs are known to modulate auditory function, we assessed their influence on circadian gene expression. Removal of circulating GCs by adrenalectomy (ADX) did not have a major impact on core clock gene expression in the cochlea. Rather it abolished the transcription of clock-controlled genes involved in inflammation. ADX abolished the known differential auditory sensitivity to day and night noise trauma and prevented the induction of GABA-ergic and glutamate receptors mRNA transcripts. However, these improvements were unrelated to changes at the synaptic level suggesting other cochlear functions may be involved. Due to this circadian regulation of noise sensitivity by GCs, we evaluated the actions of the synthetic glucocorticoid dexamethasone (DEX) at different times of the day. DEX was effective in protecting from acute noise trauma only when administered during daytime, when circulating glucocorticoids are low, indicating that chronopharmacological approaches are important for obtaining optimal treatment strategies for hearing loss. GCs appear as a major regulator of the differential sensitivity to day or night noise trauma, a mechanism likely involving the circadian control of inflammatory responses. Overall design: Cochlear samples from sham operated or adrenalectomized (ADX) CBA/Sca mice were collected every 4th hour during a 24h period and subjected to RNAseq (n=3 per time point, corresponding to a total of 36 samples).
Circadian Regulation of Cochlear Sensitivity to Noise by Circulating Glucocorticoids.
Age, Specimen part, Cell line, Subject
View SamplesGut-draining mesenteric lymph nodes (mLNs) play a key role in peripheral tolerance towards food and commensal antigens by providing an optimal microenvironment for efficient de novo induction of Foxp3+ regulatory T cells (Tregs). We recently identified mLN stromal cells as critical cellular players in this process and demonstrated that their tolerogenic properties are imprinted by microbiota. Here, we show that this imprinting process already takes place in the neonatal phase and renders the mLN stromal cell compartment resistant to inflammatory perturbations later in life. Utilizing LN transplantation, RNA-seq and single-cell RNA-seq allowed identification of stably imprinted expression signatures in mLN fibroblastic stromal cells. We dissected common stromal cell subsets across gut-draining mLNs and skin-draining LNs with location-specific immunomodulatory functions, such as subset-specific expression of Aldh1a2/3. Accordingly, mLN stromal cells shaped resident dendritic cells to attain high Treg-inducing capacity in a Bmp2-dependent manner. Thus, crosstalk between mLN stromal and resident dendritic cells provides a robust feedback mechanism for the maintenance of intestinal tolerance. Overall design: Transcriptomic analysis of fibroblastic stromal cells of skin-draining and intestinal-draining lymph nodes from endogenous and transplanted lymph nodes at the popliteal fossa.
Neonatally imprinted stromal cell subsets induce tolerogenic dendritic cells in mesenteric lymph nodes.
Cell line, Subject
View Samples