Soybean (Glycine max) seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on guilt-by-association relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants. Overall design: Total mRNA profiles of 10 time course samples of Soybean developing embryos with three replicates per sample were generated by deep sequencing, using Illumina HiSeq 2000
Transcriptome-wide functional characterization reveals novel relationships among differentially expressed transcripts in developing soybean embryos.
Age, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Tissue-specific NETs alter genome organization and regulation even in a heterologous system.
Cell line, Treatment
View SamplesThe nuclear transmembrane proteins (NETs) NET29/TMEM120A, NET39/PPAPDC3 and NET47/TM7SF2 are able to reposition chromosomes towards/away from the nuclear envelope when overexpressed or knocked down in HT1080 cells. In this study we wanted to investigate the transcriptome changes after transfection of the full length NETs or a nucleoplasmic soluble fragment that does not localise to the nuclear envelope.
Tissue-specific NETs alter genome organization and regulation even in a heterologous system.
Cell line, Treatment
View SamplesOne and four month formalin-fixed paraffin embedded biopsies from 48 kidney transplant recipients (24 AKI donors, 24 non-AKI) underwent global gene expression profiling using DNA microarrays (96 arrays). At one month, there were 898 differentially expressed genes in the AKI group (p-value <0.005; FDR <10%), but by 4-months there were no longer any differences.
Transplanting Kidneys from Deceased Donors With Severe Acute Kidney Injury.
No sample metadata fields
View SamplesStudy of HP1 Knock Down on gene expression and splicing regulation in Human HeLa cells
Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons.
Cell line
View SamplesDespite widespread use of sunscreens that minimize erythema by blocking ultraviolet B (UVB) radiation, incidence rates of melanoma continue to rise. In considering this disparity between intervention and disease prevalence, we investigated the in vivo transcriptome of human skin treated with sunscreen and solar-simulated radiation (ssR). A focal skin area of healthy participants was exposed to ssR at 1 minimal erythema dose (MED), 0.1 MED or 100 J/m2 with or without prior application of sunscreen, or to non-UVB-spectrum of ssR (solar-simulated UVA/visible/infrared radiation: ssA). Skin biopsies were analyzed using expression microarrays.
Transcriptional signatures of full-spectrum and non-UVB-spectrum solar irradiation in human skin.
Sex, Specimen part
View SamplesIn this study, we report that HCMV infection results in widespread alternative splicing (AS), shorter 3'-untranslated regions (3'UTRs) and polyA tail lengthening in host genes and CPEB1 depletion reverses infection-related post-transcriptional changes. Overall design: We performed RNA-seq for Mock (Non-targeting siRNA), human Cytomegalovirus (HCMV) with non-targeting siRNA, and CPEB1 siRNA treated human foreskin fibroblasts (HFFs). We also performed RNA-seq for lentivirus mediated GFP overexpression (OE) and CPEB1 overexpression human foreskin fibroblasts. Lastly, we performed TAIL-seq for Mock (Non-targeting siRNA), human Cytomegalovirus (HCMV) with non-targeting siRNA, and CPEB1 siRNA treated HFFs.
RNA-binding protein CPEB1 remodels host and viral RNA landscapes.
No sample metadata fields
View SamplesThe whole blood was collected pre-treatment from rheumatoid arthritis patients starting the anti_TNF therapy. All patients were nave to anti_TNFs. The disease activity was measured using the DAS28 score at the pre-treatment visit1 (DAS28_v1) and 14 weeks after treatment visit3 (DAS28_v3). The response to the therapy was evaluated using the EULAR [European League Against Rheumatism] definition of the response. The objective of the data analysis was to identify gene expression coorelating with response as well as to identify genes that differentiate responders versus non-responders pre-treatment. The results of this investigation identified 8 trainscripts that predict responders vs. non-responders with 89% accuracy.
Convergent Random Forest predictor: methodology for predicting drug response from genome-scale data applied to anti-TNF response.
Specimen part, Disease, Disease stage
View SamplesThe heat shock response (HSR) is a mechanism to cope with proteotoxic stress by inducing the expression of molecular chaperones and other heat shock response genes. The HSR is evolutionarily well conserved and has been widely studied in bacteria, cell lines and lower eukaryotic model organisms. However, mechanistic insights into the HSR in higher eukaryotes, in particular in mammals, are limited. We have developed an in vivo heat shock protocol to analyze the HSR in mice and dissected heat shock factor 1 (HSF1)-dependent and -independent pathways. Whilst the induction of proteostasis-related genes was dependent on HSF1, the regulation of circadian function related genes, indicating that the circadian clock oscillators have been reset, was independent of its presence. Furthermore, we demonstrate that the in vivo HSR is impaired in mouse models of Huntington's disease but we were unable to corroborate the general repression of transcription after a heat shock found in lower eukaryotes. Overall design: RNA-Seq was performed on mRNA isolated from quadriceps femoris muscle of 24 mice. These mice were of wild type, R6/2, and Hsf1-/- genotypes. Two mice of each genotype were tested in four conditions: (1) heat shock, (2) control heat shock, (3) HSP90 inhibition (NVP-HSP990), and (4) HSP90 inhibition vehicle.
HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models.
Age, Specimen part, Treatment, Subject
View SamplesPhosphorylation of histone H3 at Serine 10 emerges as a mechanism increasing chromatin accessibility of the transcription factor NF-kB for a particular set of immune genes. Here we report that a bacterial pathogen uses this strategy to shape the transcriptional response of infected host cells. We identify the Shigella flexneri type III protein effector OspF as a Dual Specific Phosphatase. OspF dephosphorylates MAP kinases within the nucleus impairing histone H3 phosphorylation at Serine 10 in a gene-specific manner. Therefore, OspF reprograms the transcriptional response for inactivation of a subset of NF-kB responsive genes. This regulation leads to repression of polymorphonuclear leukocytes recruitment in infected tissues. Thus, pathogens have evolved the ability to precisely modulate host cell epigenetic information as a strategy to repress innate immunity.
An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses.
No sample metadata fields
View Samples