Heat acclimation (AC) allows its faster re-induction following its decline. Constitutively preserved euchromatin state in hsp70 promoter during acclimation decline/regain pushed forward the hypothesis that acclimation decline is a period of dormant memory involving molecular program including epigenetic controlled transcriptional regulation leading to heat acclimation mediated cytoprotective memory.
Heat acclimation memory: do the kinetics of the deacclimated transcriptome predispose to rapid reacclimation and cytoprotection?
Specimen part
View SamplesThe tumorigenicity of human pluripotent stem cells (hPSCs) is a major safety concern for their application in regenerative medicine. Here we identify the tight-junction protein Claudin-6 as a specific cell surface marker of hPSCs that can be used to selectively remove Claudin-6-positive cells from mixed cultures. We show that Claudin-6 is absent in adult tissues but highly expressed in undifferentiated cells, where it is dispensable for hPSC survival and self-renewal. We use three different strategies to remove Claudin-6-positive cells from mixed populations: an antibody against Claudin-6; a cytotoxin-conjugated antibody that selectively targets undifferentiated cells; and clostridium perfringens enterotoxin, a toxin that binds several Claudins, including Claudin-6, and efficiently kills undifferentiated cells, thus eliminating the tumorigenic potential of hPSC-containing cultures. This work provides a proof of concept for the use of Claudin-6 to eliminate residual undifferentiated hPSCs from culture, highlighting a strategy that may increase the safety of hPSC-based cell therapies.
Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells.
Specimen part, Cell line
View SamplesPluripotent-specific inhibitors (PluriSIns) make a powerful tool for studying the mechanisms that control the survival of human pluripotent stem cells (hPSCs). Here we characterize PluriSIn#2 as a novel selective indirect inhibitor of topoisomerase II alpha (TOP2A). We find that TOP2A is uniquely expressed in undifferentiated hPSCs, and that its inhibition results in their rapid cell death. These findings reveal a dependency of hPSCs on the activity of TOP2A, which can be harnessed for their selective elimination from culture.
Brief reports: Controlling the survival of human pluripotent stem cells by small molecule-based targeting of topoisomerase II alpha.
Specimen part, Cell line, Treatment
View SamplesWe aimed to determine whether overexpression of endoderm-specific miRNA may affect hESC differentiation. To this end, we analyzed the effect of lentiviral-based overexpression of liver-specific miR-122 on hESC differentiation, using genomewide gene microarrays. Stable overexpression of endoderm-specific miR-122 in hESC resulted in increased expression of a few endodermal markers in spontaneously-differentiating hESC, but had no clear effect on directing differentiation towards an endodermal fate; rather, it delayed the general differentiation of hESC.
MicroRNA expression patterns and function in endodermal differentiation of human embryonic stem cells.
Cell line
View SamplesPD is the second most common neurodegenerative disease worldwide with growing prevalence. MPTP is a neurotoxin which causes the appearance of Parkinson's disease (PD) pathology. The involvement of the cholinergic system in PD has been identified decades ago and anti-cholinergic drugs were upon the first drugs used for symptomatic treatment of PD. Of note, MPTP intoxication is a model of choice for symptomatic neuroprotective therapies since it have been quite predictive. Mice were exposed to the dopaminergic neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP), with or without the protective acetylcholinesterase (AChE-R) variant. Transgenic AChE-S (the synaptic variant), AChE-R (the shorter, protective variant) and FVB/N control mice were included in this study. Two brain regions were examined: the pre-frontal cortex (PFC) and the striatal caudate-putamen (CPu). Each condition (i.e brain region and transgenic variant) was examined on both naive and MPTP-exposed mice.
Meta-analysis of genetic and environmental Parkinson's disease models reveals a common role of mitochondrial protection pathways.
Specimen part, Treatment
View SamplesWe have analyzed the effects of IL-27 signaling in dendritic cells (DCs) in the activation and polarization of effector and regulatory T cells, and the development of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis.
IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39.
Age, Specimen part, Treatment
View SamplesHuman pluripotent stem cells (hPSCs) tend to acquire chromosomal aberrations in culture, which may increase their tumorigenicity. However, the cellular mechanism(s) underlying these aberrations are largely unknown. Here we show that the DNA replication in aneuploid hPSCs is perturbed, resulting in high prevalence of defects in chromosome condensation and segregation. Global gene expression analyses in aneuploid hPSCs revealed decreased levels of actin cytoskeleton genes and their common transcription factor SRF. Down-regulation of SRF or chemical perturbation of actin cytoskeleton organization in diploid hPSCs resulted in increased replication stress and perturbation of chromosome condensation, recapitulating the findings in aneuploid hPSCs. Altogether, our results revealed that in hPSCs DNA replication stress results in a distinctive defect in chromosome condensation, underlying their ongoing chromosomal instability. Our results shed a new light on the mechanisms leading to ongoing chromosomal instability in hPSCs, and may be relevant to tumor development as well.
Genomic Instability in Human Pluripotent Stem Cells Arises from Replicative Stress and Chromosome Condensation Defects.
Specimen part, Cell line
View SamplesNaïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here we identify Mettl3, an N6-Methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout pre-implantation epiblasts and naïve embryonic stem cells (ESCs) are depleted for m6A in mRNAs and yet, are viable. However, they fail to adequately terminate their naïve state, and subsequently undergo aberrant and restricted lineage priming at the post-implantation stage, leading to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo, and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner. Overall design: 3'' polyA RNA-sequencing (equivalent to Digital Gene Expression) measured in mouse Embryonic Stem Cells (ESCs) and mouse Embriod bodies (EBs) 0,4 & 8 hours after treatment with Actinomycin which halts transcription. Measured in both WT and Mettl3-KO cells.
Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.
No sample metadata fields
View SamplesNaïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here, we identify Mettl3, an N6-methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout pre-implantation epiblasts and naïve embryonic stem cells (ESCs) are depleted for m6A in mRNAs and yet, are viable. However, they fail to adequately terminate their naïve state, and subsequently undergo aberrant and restricted lineage priming at the post-implantation stage, leading to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo, and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner. Overall design: polyA RNA-seq was measured in mouse embryonic stem cells (ESCs) and embroid bodies (EBs), each in WT and in Mettl3-KO cell lines. RNA-seq was measured also from WT mouse embronic fibroblasts (MEF). 3 biological replicates are available from ESCs and 2 from EBs. Replicate C in ESCs was measured alongside protein levels (SILAC) and was used for the analysis of that assay.
Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.
No sample metadata fields
View SamplesNaïve and primed pluripotent states retain distinct molecular properties, yet limited knowledge exists on how their state transitions are regulated. Here we identify Mettl3, an N6-Methyladenosine (m6A) transferase, as a regulator for terminating murine naïve pluripotency. Mettl3 knockout pre-implantation epiblasts and naïve embryonic stem cells (ESCs) are depleted for m6A in mRNAs and yet, are viable. However, they fail to adequately terminate their naïve state, and subsequently undergo aberrant and restricted lineage priming at the post-implantation stage, leading to early embryonic lethality. m6A predominantly and directly reduces mRNA stability, including that of key naïve pluripotency promoting transcripts. This study highlights a critical role for an mRNA epigenetic modification in vivo, and identifies regulatory modules that functionally influence naïve and primed pluripotency in an opposing manner. Overall design: Ribosome footprint (Ribo-Seq) was measured from mouse embryonic stem cells and mouse embriod bodies, in WT and Mettl3-KO cell lines.
Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.
No sample metadata fields
View Samples