Innate immune responses rely on expression of potent effector molecules, such as antimicrobial peptides, which have the capability to kill invading microorganisms. The presence and recognition of microbial components triggers several signaling pathways, such as the Toll and IMD pathways, which in turn activate NF-kB/Rel transcription factors to induce transcription of a large number of immune system genes. Not much is known how these genes are kept silent in healthy flies in the presence of commensal microorganisms, and how the expression of immune defense genes is turned off. We found that several immune defense genes are constitutively active in nub[1] mutants, indicating that the POU domain transcription factor Pdm1/Nubbin may act as a repressor of immune gene expression.
The Oct1 homolog Nubbin is a repressor of NF-κB-dependent immune gene expression that increases the tolerance to gut microbiota.
Specimen part
View SamplesThe FBXL10 protein (also known as KDM2B, JHDM1B, CXXC2, and NDY1) is bound to essentially all CpG-rich promoters in the mammalian genome. FBXL10 is expressed as two isoforms: FBXL10-1, a longer form that contains an N-terminal JmjC domain with C- terminal F-box, CXXC, PHD, RING, and leucine rich repeat (LRR) domains, and FBXL10-2, a shorter form that initiates at an alternative internal exon and which lacks the JmjC domain but retains the other domains. Selective deletion of Fbxl10-1 had been reported to produce a minor and variable phenotype, and most mutant animals were essentially normal. We show here that deletion of Fbxl10-2 (in a manner that does not perturb expression of Fbxl10-1) resulted in a very different phenotype with craniofacial abnormalities, greatly increased lethality, and female sterility in surviving homozygous mutants. The phenotype of the Fbxl10-2 deletion was more severe in female mutants. We found that mutants that lacked both FBXL10-1 and -2 showed embryonic lethality and even more extreme sexual dimorphism, with more severe gene dysregulation in mutant female embryos. X-linked genes were most severely dysregulated, and there was marked overexpression of Xist in mutant females although genes that encode factors that bind to Xist RNA were globally down-regulated in mutant female as compared to male embryos. FBXL10 is the first factor shown to be required both for the normal expression and function of the Xist gene. Overall design: Expression analysis using RNA-seq was performed on WT and Fbxl10T/T male and female embryos.
Abnormal X chromosome inactivation and sex-specific gene dysregulation after ablation of FBXL10.
Sex, Specimen part, Cell line, Subject
View SamplesEffect of either FLO8 or MSS11 deletion and -overexpression on yeast transcript profiles compared to wild type in laboratory yeast strains 1278b and S288c - also the effect of FLO11 (MUC1) overexpression in the 1278b genetic background
Many Saccharomyces cerevisiae Cell Wall Protein Encoding Genes Are Coregulated by Mss11, but Cellular Adhesion Phenotypes Appear Only Flo Protein Dependent.
No sample metadata fields
View SamplesIn this study, we have investigated the role of secondhand smoke (SHS) in the development of metabolic liver disease by characterizing the global regulation of genes and molecular pathways in SHS-exposed mice after termination of exposure (SHS 4M) and following one-month recovery in clean air (SHS 4M +1M RECOVERY).
Secondhand Smoke Induces Liver Steatosis through Deregulation of Genes Involved in Hepatic Lipid Metabolism.
Sex
View SamplesOverexpression of high mobility group AT-hook 2 (HMGA2) associated with truncations of its 3 untranslated region (UTR) with let-7 micro RNA-complementary sequences have been identified in patients with paroxysmal nocturnal hemoglobinuria (PNH). Here, we generated transgenic mice (Hmga2 mice) with a 3UTR-trncated Hmga2 cDNA that overexpress Hmga2 mRNA and protein in hematopoietic organs. Hmga2 mice showed proliferative hematopoiesis that mimicked a myeloproliferative neoplasm (MPN)-like phenotype with increased numbers of all lineages of peripheral blood cells, hypercellular bone marrow (BM), splenomegaly with extramedullary erythropoiesis, and erythropoietin-independent erythroid colony formation compared to wild-type mice. Hmga2 BM-derived cells took over most of hematopoiesis in competitive repopulations during serial BM transplants. When we bred mice with circulating PNH cells (Piga- mice) with Hmga2 mice, the lack of GPI-linked proteins did not add an additional clonal advantage to the Hmga2+ cells. In summary, our results showed that the overexpression of a 3UTR-truncated Hmga2 leads to a proliferative hematopoiesis with clonal advantage, which may explain clonal expansion in PNH or MPN at the level of HSC.
3'UTR-truncated Hmga2 cDNA causes MPN-like hematopoiesis by conferring a clonal growth advantage at the level of HSC in mice.
Specimen part
View SamplesWe report RNA-sequencing data of 80 tumor-educated blood platelet (TEP) samples isolated from 39 patients with lower-grade glioma (LGG) and 41 healthy donors (HD). This dataset can be employed as input for the thromboSeq source code (available via GitHub: https://github.com/MyronBest/) to reproduce the thromboSeq drylab pipeline. Overall design: Blood platelets were isolated from whole blood in purple-cap BD Vacutainers containing EDTA anti-coagulant by standard centrifugation. Total RNA was extracted from the platelet pellet, subjected to cDNA synthesis and SMARTer amplification, fragmented by Covaris shearing, and prepared for sequencing using the Truseq Nano DNA Sample Preparation Kit. Subsequently, pooled sample libraries were sequenced on the Illumina Hiseq 2500 platform. All steps were quality-controlled using Bioanalyzer 2100 with RNA 6000 Picochip, DNA 7500 and DNA High Sensitivity chips measurements. For further downstream analyses, reads were quality-controlled using Trimmomatic, mapped to the humane reference genome using STAR, and intron-spanning reads were summarized using HTSeq.
RNA sequencing and swarm intelligence-enhanced classification algorithm development for blood-based disease diagnostics using spliced blood platelet RNA.
Specimen part, Disease stage, Subject
View SamplesThe satellite cell is considered the major tissue-resident stem cell underlying muscle regeneration, however, multiple non-satellite cell myogenic progenitors have been identified. PW1/Peg3 is expressed in satellite cells as well as a subset of interstitial cells with myogenic potential termed PICs (PW1+ Interstitial Cells). PICs differ from satellite cells by their anatomical location (satellite cells are sublaminal and PICs are interstitial), they do not express any myogenic marker and arise from a Pax3-independent lineage. Upon isolation from juvenile muscle (1 to 3 weeks old), PICs are capable to form both skeletal and smooth muscle suggesting they constitute a more plastic population compared to satellite cells. We used microarrays to gain insight into the relantionship between PICs and satellite cells.
Defining skeletal muscle resident progenitors and their cell fate potentials.
Age, Specimen part
View SamplesFor more than a decade, microarrays have been a powerful and widely used tool to explore the transcriptome of biological systems. However, the amount of biological material from cell sorting or laser capture microdissection is much too small to perform microarray studies. To address this issue, RNA amplification methods have been developed to generate sufficient targets from picogram amounts of total RNA to perform microarray hybridisation. In this study, four commercial protocols for amplification of picograms amounts of input RNA for microarray expression profiling were evaluated and compared. The quantitative and qualitative performances of the methods were assessed. Microarrays were hybridised with the amplified targets and the amplification protocols were compared with respect to the quality of expression profiles, reproducibility within a concentration range of input RNA, and sensitivity.
Evaluation of methods for amplification of picogram amounts of total RNA for whole genome expression profiling.
No sample metadata fields
View SamplesMicroglia colonize the brain parenchyma at early stages of development and accumulate in specific regions where they actively participate in cell death, angiogenesis, neurogenesis and synapse elimination. A recurring feature of embryonic microglial distribution is their association with developing axon tracts which, together with in vitro data, supports the idea of a physiological role for microglia in neurite development. Yet the demonstration of this role of microglia is still lacking. Here, we have studied the consequences of microglial dysfunction on the formation of the corpus callosum, the largest connective structure in the mammalian brain, which shows consistent microglial accumulation during development. We studied two models of microglial dysfunction: the loss-of-function of DAP12, a key microglial-specific signaling molecule, and a model of maternal inflammation by peritoneal injection of LPS at E15.5. We performed transcriptional profiling of maternally inflamed and Dap12-mutant microglia at E17.5. We found that both treatments principally down-regulated genes involved in nervous system development and function, particularly in neurite formation. We then analyzed the functional consequences of these microglial dysfunctions on the formation of the corpus callosum. We also took advantage of the Pu.1-/- mouse line, which is devoid of microglia. We now show that all three models of altered microglial activity resulted in the same defasciculation phenotype. Our study demonstrates that microglia are actively involved in the fasciculation of corpus callosum axons.
Microglia shape corpus callosum axon tract fasciculation: functional impact of prenatal inflammation.
Sex, Specimen part, Treatment
View SamplesProgression to malignancy requires cells to overcome senescence and switch to an immortal phenotype. Thus, exploring the genetic and epigenetic changes that occur during senescence/immortalization may help elucidate crucial events that lead to cell transformation. In the present study, we have globally profiled DNA methylation in relation to gene expression in primary, senescent and immortalized mouse embryonic fibroblasts.
Mammalian cells acquire epigenetic hallmarks of human cancer during immortalization.
Specimen part
View Samples