Autism spectrum disorders (ASD) are a group of genetic disorders often overlapping with other neurological conditions. We previously described abnormalities in the branched chain amino acid (BCAA) catabolic pathway as a cause of ASD. Here we show that the solute carrier transporter 7a5 (SLC7A5), a large neutral amino acid transporter localized at the blood brain barrier (BBB), has an essential role in maintaining normal levels of brain BCAAs. In mice, deletion of Slc7a5 from the endothelial cells of the BBB leads to decreased levels of brain BCAAs, abnormal mRNA translation and severe neurological abnormalities. Furthermore, we identified several patients with autistic traits and motor delay carrying deleterious homozygous mutations in the SLC7A5 gene. Finally, we demonstrate that BCAA intracerebroventricular administration ameliorates abnormal behaviors in adult mutant mice. Our data elucidate a neurological syndrome defined by SLC7A5 mutations and support an essential role for the BCAA in human brain function. Overall design: RNA-sequencing of cerebellum from 3 wildtype mice and 3 Slc7a5 KO mice
Impaired Amino Acid Transport at the Blood Brain Barrier Is a Cause of Autism Spectrum Disorder.
Specimen part, Subject
View SamplesWe utilized the Barley1 Affymetrix GeneChip for comparative transcript analysis of Betzes barley, Chinese Spring wheat, and Chinese SpringBetzes ditelosomic chromosome addition lines to physically map barley genes to their respective chromosome arm locations. We mapped barley genes to chromosome arms (1HS, 2HS, 2HL, 3HS, 3HL, 4HS, 4HL, 5HS, 5HL, 7HS, and 7HL) based on their transcript levels in the ditelosomic addition lines. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Hatice Bilgic. The equivalent experiment is BB55 at PLEXdb.]
Mapping barley genes to chromosome arms by transcript profiling of wheat-barley ditelosomic chromosome addition lines.
Specimen part
View SamplesNeuronal migration defects (NMDs) are among the most common and severe brain abnormalities in humans. Lack of disease models in mice or in human cells has hampered the identification of underlying mechanisms. From patients with severe NMDs we generated iPSCs then differentiated neural progenitor cells (NPCs). On artificial extracellular matrix, patient-derived neuronal cells showed defective migration and impaired neurite outgrowth. From a cohort of 107 families with NMDs, sequencing identified two homozygous C-terminal truncating mutations in CTNNA2, encoding aN-catenin, one of three paralogues of the a-catenin family, involved in epithelial integrity and cell polarity. Patient-derived or CRISPR-targeted CTNNA2- mutant neuronal cells showed defective migration and neurite stability. Recombinant aN-catenin was sufficient to bundle purified actin and to suppress the actin-branching activity of ARP2/3. Small molecule inhibitors of ARP2/3 rescued the CTNNA2 neurite defect. Thus, disease modeling in human cells could be used to understand NMD pathogenesis and develop treatments for associated disorders. Overall design: 2 biological replicates per individual (2 iPSC clone differentiations), excluding 1263A, which has one sample
Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration.
No sample metadata fields
View SamplesTranscriptome comparison of 15 lines representing the University of Minnesota six-rowed malting breeding program at two time points of the malting process: 'out of steep' and '3 days of germination'. Three replicates of each genotype and time point were accomplished. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Maria Muoz-Amatriain. The equivalent experiment is BB91 at PLEXdb.]
Transcriptome analysis of a barley breeding program examines gene expression diversity and reveals target genes for malting quality improvement.
Age, Specimen part
View SamplesTranscriptome comparison of the winter malting barley '88Ab536' with the spring malting variety 'Morex' at two time points of the malting process: 'out of steeping' and '3 days of germination'. Three replicates of each genotype and time point were accomplished. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Maria Munoz-Amatriain. The equivalent experiment is BB76 at PLEXdb.]
Structural and functional characterization of a winter malting barley.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes.
No sample metadata fields
View SamplesEpstein Barr virus causes linfectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. These anlyses were undertaken in order to determine what gene expression changes occur as the result of primary Epstein Barr virus infection. Samples were taken both before and following acquisition of the virus for direct comparison of samples for single subjects. These data provide an important first description of the response to natural herepesvirus infection in humans.
Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes.
No sample metadata fields
View SamplesSoybean root hair transcriptional response to their inoculation by the symbiotic bacteria B. japonicum involved in soybean nodulation. We used the first generation of an Affymetrix microarray to quantify the abundance of the transcripts from soybean root hair cells inoculated and mock-inoculated by B. japonicum. This experiment was performed on a time-course from 6 to 48 hours after inoculation.
Complete transcriptome of the soybean root hair cell, a single-cell model, and its alteration in response to Bradyrhizobium japonicum infection.
Specimen part, Treatment, Time
View SamplesFindings suggest that PPARalpha plays a decisive role in the development of hypertrophy, affecting the functional outcome of the heart. Unfortunately, information on the nature of PPARalpha-dependent processes in cardiac hypertrophy is fragmentary and incomplete.
Transcriptomic analysis of PPARalpha-dependent alterations during cardiac hypertrophy.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A model system for assessing and comparing the ability of exon microarray and tag sequencing to detect genes specific for malignant B-cells.
Cell line
View Samples